江苏省无锡市积余教育集团2023-2024学年数学九上期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.四边形为平行四边形,点在的延长线上,连接交于点,则下列结论正确的是( )
A.B.C.D.
2.下列说法正确的是( )
A.了解飞行员视力的达标率应使用抽样调查
B.一组数据3,6,6,7,8,9的中位数是6
C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000
D.一组数据1,2,3,4,5的方差是2
3.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么( )
A.a>0,y1>y2 B.a>0,y1<y2 C.a<0,y1>y2 D.a<0,y1<y2
4.边长相等的正方形与正六边形按如图方式拼接在一起,则的度数为( )
A.B.C.D.
5.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )
A.2B.4C.6D.8
6.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )
A.6(1+x)=8.64
B.6(1+2x)=8.64
C.6(1+x)2=8.64
D.6+6(1+x)+6(1+x)2=8.64
7.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是( )
A.B.C.D.
8.下列函数的对称轴是直线的是( )
A.B.C.D.
9.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是( )
A.1cmB.2cmC.3cmD.4cm
10.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是( )
A.k≥﹣1且k≠0B.k≥﹣1C.k≤1D.k≤1且k≠0
二、填空题(每小题3分,共24分)
11.如图所示的弧三角形,又叫莱洛三角形, 是机械学家莱洛首先进行研究的.弧三角形是这样画的:先画一个正三角,然后分别以三个顶点为圆心,边长长为半径画弧得到的三角形.若中间正三角形的边长是10,则这个莱洛三角形的周长是____________.
12.如图,点,分别在线段,上,若,,,,则的长为________.
13.请写出“两个根分别是2,-2”的一个一元二次方程:_______________
14.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.
15.在△ABC中,∠B=45°,csA=,则∠C的度数是_____.
16.已知是关于的方程的一个根,则___________.
17.从长度分别是,,,的四根木条中,抽出其中三根能组成三角形的概率是______.
18.在平面直角坐标系中,直线y=x-2与x轴、y轴分别交于点B、C,半径为1的⊙P的圆心P从点A(4,m )出发以每秒个单位长度的速度沿射线AC的方向运动,设点P运动的时间为t秒,则当t=_____秒时,⊙P与坐标轴相切.
三、解答题(共66分)
19.(10分)已知二次函数与轴交于、(在的左侧)与轴交于点,连接、.
(1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、、,求的周长最小值;
(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧). 将绕点顺时针旋转至. 抛物线的对称轴上有—动点,坐标系内是否存在一点,使得以、、、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.
20.(6分)解方程:
(1)x2-4x+1=0 (2)x2+3x-4=0
21.(6分)某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:
(1)求样本中平均每条鱼的质量;
(2)估计鱼塘中该种鱼的总质量;
(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.
22.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D ,BE⊥AB,垂足为B,BE=CD连接CE,DE.
(1)求证:四边形CDBE是矩形
(2)若AC=2 ,∠ABC=30°,求DE的长
23.(8分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为 “双人组”.小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
24.(8分)先化简再求值:其中.
25.(10分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=2,AC=2,求AD的长.
26.(10分)如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、C
4、B
5、D
6、C
7、C
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、10π
12、7.1
13、
14、
15、75°
16、2024
17、
18、1,3,5
三、解答题(共66分)
19、(1);(1)存在,理由见解析;,,,,
20、(1)x1=+2,x2=-+2 (2)x1=-4,x2=1
21、(1)1.78kg;(2)1kg;(3)y=14x,0≤x≤1.
22、(1)见详解,(2)DE =2
23、
24、
25、(1)证明见解析;(2)AD=2.
26、1
数量/条
平均每条鱼的质量/kg
第1次捕捞
20
1.6
第2次捕捞
15
2.0
第3次捕捞
15
1.8
江苏省无锡市积余教育集团2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案: 这是一份江苏省无锡市积余教育集团2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2023-2024学年江苏省无锡市积余教育集团数学八上期末考试模拟试题含答案: 这是一份2023-2024学年江苏省无锡市积余教育集团数学八上期末考试模拟试题含答案,共6页。试卷主要包含了已知,立方根等于它本身的有,一次函数的图象与轴的交点坐标是,在,分式的个数有,下列命题中为假命题的是等内容,欢迎下载使用。
2023-2024学年江苏省无锡市积余教育集团数学八年级第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年江苏省无锡市积余教育集团数学八年级第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了若分式的值为零,则x=等内容,欢迎下载使用。