江苏省无锡市东绛实验学校2023-2024学年数学九年级第一学期期末复习检测试题含答案
展开这是一份江苏省无锡市东绛实验学校2023-2024学年数学九年级第一学期期末复习检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,正五边形的每个外角度数为,下列事件是随机事件的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
A.B.C.D.
2.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为( )
A.5sinAB.5csAC.D.
3.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.1.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )
A.4cmB.6cmC.8cmD.10cm
4.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则csB的值是( )
A.
B.
C.
D.
5.下列图形,是轴对称图形,但不是中心对称图形的是( )
A.B.C.D.
6.如图,矩形的面积为4,反比例函数()的图象的一支经过矩形对角线的交点,则该反比例函数的解析式是( )
A.B.C.D.
7.已知点,,是抛物线上的三点,则a,b,c的大小关系为( )
A.B.C.D.
8.如图,、两点在双曲线上,分别经过点、两点向、轴作垂线段,已知,则( )
A.6B.5C.4D.3
9.正五边形的每个外角度数为( )
A.B.C.D.
10.下列事件是随机事件的是( )
A.打开电视,正在播放新闻B.氢气在氧气中燃烧生成水
C.离离原上草,一岁一枯荣D.钝角三角形的内角和大于180°
二、填空题(每小题3分,共24分)
11.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了______度.
12.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.
13.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______.
14.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是 .
15.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是_____.
16.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号)__________.
17.找出如下图形变化的规律,则第100个图形中黑色正方形的数量是_____.
18.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.
三、解答题(共66分)
19.(10分)如图,在平行四边形中,、分别为边、的中点,是对角线,过点作交的延长线于点.
(1)求证:;
(2)若,求证:四边形是菱形.
20.(6分)已知抛物线y=x2+(1﹣2a)x﹣2a(a是常数).
(1)证明:该抛物线与x轴总有交点;
(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;
(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线y=kx+1(k为常数)与新图象G公共点个数的情况.
21.(6分)感知定义
在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.
尝试运用
(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.
①证明△ABD是“类直角三角形”;
②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.
类比拓展
(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.
22.(8分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C
(1)求证:∠CBP=∠ADB
(2)若OA=2,AB=1,求线段BP的长.
23.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
24.(8分)解下列方程:
(1);
(2).
25.(10分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),
(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;
(Ⅱ)不论a取何实数,该抛物线都经过定点H.
①求点H的坐标;
②证明点H是所有抛物线顶点中纵坐标最大的点.
26.(10分)如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、B
5、A
6、D
7、D
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、90
12、1
13、
14、
15、2
16、
17、150个
18、1.95
三、解答题(共66分)
19、(1)见解析;(2)见解析
20、(1)见解析;(2)1<a≤;(3)新图象G公共点有2个.
21、(1)①证明见解析;②CE=;(2)当△ABC是“类直角三角形”时,AC的长为或.
22、(1)证明见解析;(2)BP=1.
23、这棵树CD的高度为8.7米
24、(1),;(2),,
25、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.
26、(1)反比例函数的解析式为:y=;一次函数的解析式为:y=x﹣2;
(2)S△AOB=;
(2)一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>1.
相关试卷
这是一份江苏省无锡市东林中学2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案,共7页。试卷主要包含了下列说法中,正确的是,计算=等内容,欢迎下载使用。
这是一份江苏省无锡市江阴市南闸实验学校2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案,共7页。试卷主要包含了二次函数的顶点坐标为,若点等内容,欢迎下载使用。
这是一份江苏省无锡市2023-2024学年数学九年级第一学期期末复习检测试题含答案,共8页。