江西省安远县三百山中学2023-2024学年九上数学期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是( )
A.4B.6C.8D.10
2.下列说法不正确的是( )
A.一组同旁内角相等的平行四边形是矩形
B.一组邻边相等的菱形是正方形
C.有三个角是直角的四边形是矩形
D.对角线相等的菱形是正方形
3.若,则的值为( )
A.B.C.D.
4.圆的面积公式S=πR2中,S与R之间的关系是( )
A.S是R的正比例函数B.S是R的一次函数
C.S是R的二次函数D.以上答案都不对
5.两三角形的相似比是2:3,则其面积之比是( )
A.:B.2:3C.4:9D.8:27
6.下列关于x的方程中,一定是一元二次方程的为( )
A.ax2+bx+c=0B.x2﹣2=(x+3)2
C.x2+﹣5=0D.x2=0
7.如图,点、、在上,,,则的度数为( )
A.B.C.D.
8.如图,将一副三角板如图放置,如果,那么点到的距离为( )
A.B.C.D.
9.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )
A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣25
10.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.
如图1,当CD=AC时,tanα1=;
如图2,当CD=AC时,tanα2=;
如图3,当CD=AC时,tanα3=;
……
依此类推,当CD=AC(n为正整数)时,tanαn=_____.
12.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.
13.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A' 的坐标为__________.
14.如图,菱形的边长为4,,E为的中点,在对角线上存在一点,使的周长最小,则的周长的最小值为__________.
15.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.
16.张华在网上经营一家礼品店,春节期间准备推出四套礼品进行促销,其中礼品甲45元/套,礼品乙50元/套,礼品丙70元/套,礼品丁80元/套,如果顾客一次购买礼品的总价达到100元,顾客就少付x元,每笔订单顾客网上支付成功后,张华会得到支付款的80%.
①当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付_________元;
②在促销活动中,为保证张华每笔订单得到的金额均不低于促销前总价的六折,则x的最大值为________.
17.已知A(x1,y1)B(x2,y2)为反比例函数图象上的两点,且x1<x2<0,则:y1_____y2(填“>”或“<”).
18.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,抛物线经过点,交轴于点.
(1)求抛物线的解析式.
(2)点是线段上一动点,过点作垂直于轴于点,交抛物线于点,求线段的长度最大值.
20.(6分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.
(1)求证:∠A=∠CBD.
(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.
21.(6分)某居民小区要在一块一边靠墙的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为32m的栅栏围成(如图所示).如果墙长16m,满足条件的花园面积能达到120m2吗?若能,求出此时BC的值;若不能,说明理由.
22.(8分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.
(1)求证:BC是⊙O的切线;
(2)若BF=BC=2,求图中阴影部分的面积.
23.(8分)如图,在矩形中,点为原点,点的坐标为,点的坐标为,抛物线经过点、,与交于点.
备用图
⑴求抛物线的函数解析式;
⑵点为线段上一个动点(不与点重合),点为线段上一个动点,,连接,设,的面积为.求关于的函数表达式;
⑶抛物线的顶点为,对称轴为直线,当最大时,在直线上,是否存在点,使以、、、为顶点的四边形是平行四边形,若存在,请写出符合条件的点的坐标;若不存在,请说明理由.
24.(8分)计算:|2﹣|+()﹣1+﹣2cs45°
25.(10分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
(1)求每部型手机和型手机的销售利润;
(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
①求关于的函数关系式;
②该手机店购进型、型手机各多少部,才能使销售总利润最大?
(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
26.(10分)先化简,再求代数式的值,其中
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、B
4、C
5、C
6、D
7、C
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、
12、-1或2或1
13、 (1,2)
14、+2
15、1或2
16、1 25
17、<
18、
三、解答题(共66分)
19、(1);(2)4.
20、(1)证明见解析;(2)BM=,理由见解析.
21、花园的面积能达到20m2,此时BC的值为2m.
22、 (1)证明见解析;(2).
23、(1);(2);(3)点的坐标为,
24、1
25、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
26、,
2023-2024学年江西省宁都县九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年江西省宁都县九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知抛物线y=ax2+bx+c,下列四个数中,最小数的是等内容,欢迎下载使用。
2023-2024学年江西省安远县三百山中学数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份2023-2024学年江西省安远县三百山中学数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,的绝对值是,如图,点A1的坐标为,下列事件中,必然发生的是,下列是随机事件的是等内容,欢迎下载使用。
2023-2024学年江西省宜春实验中学八上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年江西省宜春实验中学八上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知点A的坐标为,在代数式中,分式共有等内容,欢迎下载使用。