河北省石家庄桥西区2023-2024学年九年级数学第一学期期末教学质量检测试题含答案
展开
这是一份河北省石家庄桥西区2023-2024学年九年级数学第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了下列方程中没有实数根的是,已知二次函数等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽1.8米,最深处水深1.2米,则此输水管道的直径是( )
A.1.5B.1C.2D.4
2.在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是( )
A.(﹣3,﹣6)B.(1,﹣4)C.(1,﹣6)D.(﹣3,﹣4)
3.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是( )
A.B.C.1D.﹣1
4.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是( )
A.3B.﹣3C.1D.﹣1
5.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点C是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为( )
A.B.C.D.
6.将6497.1亿用科学记数法表示为( )
A.6.4971×1012B.64.971×1010C.6.5×1011D.6.4971×1011
7.下列方程中没有实数根的是( )
A.B.
C.D.
8.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为( )
A.B.C.D.
9.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是( )
A.4个B.3个C.2个D.1个
10.已知正六边形的边心距是,则正六边形的边长是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为_____(度).
12.若,则=_________.
13.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.
14.若点与关于原点对称,则的值是___________.
15.在如图所示的网格中,每个小正方形的边长都为2,若以小正形的顶点为圆心,4为半径作一个扇形围成一个圆锥,则所围成的圆锥的底面圆的半径为___________.
16.二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
17.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.
18.如图,在扇形中,,正方形的顶点是的中点,点在上,点在的延长线上,当正方形的边长为时,则阴影部分的面积为_________.(结果保留)
三、解答题(共66分)
19.(10分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.
(1)如图1,若AD=DC,则BE的长为 ,BE2+CD2与AD2的数量关系为 ;
(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;
(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为 .
20.(6分)如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.
21.(6分)某果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果(千克),增种果树(棵), 它们之间的函数关系如图所示.
(1)求与之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
22.(8分)如图,在中,点在边上,,分别过点,作,的平行线,并交于点,且的延长线交于点,.
(1)求证:.
(2)求证:四边形为菱形.
(3)若,,求四边形的面积.
23.(8分)已知:梯形ABCD中,AD//BC,AD=AB,对角线AC、BD交于点E,点F在边BC上,且∠BEF=∠BAC.
(1)求证:△AED∽△CFE;
(2)当EF//DC时,求证:AE=DE.
24.(8分)解一元二次方程:x2﹣2x﹣3=1.
25.(10分)如图,抛物线经过点,请解答下列问题:
求抛物线的解析式;
抛物线的顶点为点,对称轴与轴交于点,连接,求的长.
点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.
26.(10分)如图,抛物线的图象与正比例函数的图象交于点,与轴交于点.
(1)求抛物线的解析式;
(2)将绕点逆时针旋转得到,该抛物线对称轴上是否存在点,使有最小值?若存在,请求出点的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、B
4、D
5、A
6、D
7、D
8、A
9、B
10、A
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、1
15、
16、①③.
17、
18、
三、解答题(共66分)
19、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1
20、(1)m=2 ;(2)P(1+,-9)或P(1-,-9)
21、(1);(2)增种果树10棵时,果园可以收获果实6750千克.
22、(1)证明见解析;(2)证明见解析;(3)
23、(1)证明见解析;(2)证明见解析.
24、x1=﹣1,x2=2.
25、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)
26、(1);(2)存在,.
相关试卷
这是一份河北省石家庄市桥西区2023-2024学年八年级上学期期末数学试题(含答案),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河北省石家庄市桥西区数学九上期末统考试题含答案,共9页。试卷主要包含了答题时请按要求用笔,二次函数y=ax2+bx+c,下列各式中属于最简二次根式的是等内容,欢迎下载使用。
这是一份2023-2024学年河北省石家庄市桥西区部分学校数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。