绵阳市高中2021级高三第二次诊断性考试理科数学试卷及参考答案
展开一、选择题:本大题共12小题,每小题5分,共60分.
ABACC ABDDC AB
二、填空题:本大题共4小题,每小题5分,共20分.
13. 14. 15. 16.
三、解答题:本大题共6小题,共70分.
17.解:(1)设数列的公差是,
则,3分
解得,4分
∴;6分
(2),8分
∴10分
.12分
18.解:(1)
,4分
故有95%的把握认为喜欢旅游与性别有关.5分
(2)根据题意,全市男性市民喜欢旅游的概率为,,6分
的可以取值为0,1,2,7分
8分
,9分
,10分
的分布列如下:
11分
∴.12分
19.解:(1)∵2分
,4分
∴;5分
(2)∵,
∴,6分
∴,①7分
又∵,②
,8分
又∵B是△ABC的内角,
∴,又,则,9分
∴在△ABC中,由余弦定理得:
∴,10分
由(1)知:,
∴,
∴或(舍),11分
又,则.12分
20.解:(1)设,,
联立,消y整理得:,2分
所以:,,3分
∴
4分
所以,即抛物线E的方程为:;5分
(2)由(1)可知:,6分
且,所以:,
,7分
直线FA的方程为:,所以:,8分
同理:,
所以9分
10分
11分
解得:或.12分
21.解:(1)令,则在[0,+∞)上至少有一个零点.1分
的对称轴为:,
= 1 \* GB3 \* MERGEFORMAT ①当a=0时,在[0,+∞)上恰有一个零点,符合题意;2分
= 2 \* GB3 \* MERGEFORMAT ②当a>0时,对称轴<0,则在[0,+∞)是增函数,
而,,
∴在[0,+∞)上必有一个零点,符合题意;3分
③当a<0时,对称轴,
则在[0,)上是减函数,在[,+∞)是增函数,
∵在[0,+∞)上至少有一个零点,
∴只需,则,4分
综上所述,a的取值范围为.5分
(2)解法一:,6分
∵在R上是单调函数,则,7分
∴在R上是单调递减函数,
∴,要证,即证,
结合在R上是减函数,所以只需证,8分
而,即证(*)9分
令10分
11分
,当x=1时,等号成立,
∴(*)成立.命题得证.12分
解法二:,6分
∵在R上是单调函数,则,
∴在R上是单调递减函数,
∴,,且,
当时,,符合题意;
当时,,不符合题意;
当时,,不符合题意;7分
∴,要证,即证,
结合在R上是减函数,所以只需证,
而,即证对任意成立.(*)8分
令,
∴,9分
令,
函数在(1,+∞)上是增函数,则,10分
函数(x>1),则,
∴在(1,+∞)上是增函数,则,11分
∴在(1,+∞)上恒成立,
∴在(1,+∞)上是增函数,则,
∴(*)成立,命题得证.12分
22.(1)由题意:,且,2分
∴曲线C的普通方程为:3分
∴曲线C的极坐标方程为(),
即();5分
(2)由(1)得,
因为且OA⊥OB,不妨设,,6分
∴,7分
∴=,8分
∴9分
.10分
23.(1)证明:因为
,3分
∴,4分
当且仅当,即时,等号成立;5分
(2)函数7分
根据(1)的结论,,8分
当且仅当,即时,等号成立.9分
∴函数的最大值为,此时x=2.10分0
1
2
P
四川省绵阳市高中2024届高三第二次诊断性考试理科数学: 这是一份四川省绵阳市高中2024届高三第二次诊断性考试理科数学,文件包含四川省绵阳市高中2024届高三第二次诊断性考试理科数学试题无答案docx、理数答案pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
绵阳市高中2021级第二次诊断性考试理科数学试卷及参考答案: 这是一份绵阳市高中2021级第二次诊断性考试理科数学试卷及参考答案,文件包含数学理docx、绵阳二诊理科数学pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
四川省绵阳市高中2024届高三第二次诊断性考试理科数学试题: 这是一份四川省绵阳市高中2024届高三第二次诊断性考试理科数学试题,文件包含四川省绵阳市高中2024届高三第二次诊断性考试理科数学试题无答案docx、理数答案pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。