浙江省嘉兴市秀洲片区2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.抛物线y=(x-3)2+4的顶点坐标是( )
A.(-1,2) B.(-1,-2) C.(1,-2) D.(3,4)
2.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是( )
A.①③B.②④C.①②④D.②③④
3.对于反比例函数,下列说法错误的是( )
A.它的图像在第一、三象限
B.它的函数值随的增大而减小
C.点为图像上的任意一点,过点作轴于点.的面积是.
D.若点和点在这个函数图像上,则
4.若反比例函数图象上有两个点,设,则不经过第( )象限.
A.一B.二C.三D.四
5.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是( )
A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2
6.一元二次方程的两个根为,则的值是( )
A.10B.9C.8D.7
7.如图,已知OB为⊙O的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为( )
A.3cmB.6cmC.12cmD.24cm
8.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )
A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2
9.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是( )
A.y=xB.y=﹣C.y=x2D.y=﹣x2
10.点到轴的距离是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是____.
12.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)
13.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)
14.如图,点在反比例函数的图象上,轴,垂足为,且,则__________.
15.不等式组的解集是_____________.
16.如图,双曲线经过斜边的中点,与直角边交于点.过点作于点,连接,则的面积是__________.
17.在不透明的袋中装有大小和质地都相同的个红球和个白球,某学习小组做“用频率估计概率"的试验时,统计了摸到红球出现的频率并绘制了折线统计图,则白球可能有_______个.
18.方程是关于的一元二次方程,则二次项系数、一次项系数、常数项的和为__________.
三、解答题(共66分)
19.(10分)如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.
(1)求证:AB=AF;
(2)当AB=3,BC=4时,求的值.
20.(6分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)
21.(6分)为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.
(1)求甲、乙两种篮球每个的售价分别是多少元?
(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;
(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?
22.(8分)如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;
(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.
23.(8分)已知关于x的一元二次方程x2+2x+2k-5=0有两个实数根.
(1)求实数k的取值范围.
(2)若方程的一个实数根为4,求k的值和另一个实数根.
(3)若k为正整数,且该方程的根都是整数,求k的值.
24.(8分)如图,点是的内心,的延长线交于点,交的外接圆于点,连接,过点作直线,使;
(1)求证:直线是的切线;
(2)若,,求.
25.(10分)(1)解方程:;(2)计算:
26.(10分)阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:,等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知,两数相除,同号得正,异号得负,其字母表达式为:
(1)若,,则,若,,则;
(2)若,,则,若,,则.反之,(1)若,则或
(3)若,则__________或_____________.根据上述规律,求不等式,的解集,方法如下:
由上述规律可知,不等式,转化为①或②
解不等式组①得,解不等式组②得.
∴不等式,的解集是或.
根据上述材料,解决以下问题:
A、求不等式的解集
B、乘法法则与除法法则类似,请你类比上述材料内容,运用乘法法则,解决以下问题:求不等式的解集.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、B
4、C
5、B
6、D
7、C
8、D
9、D
10、C
二、填空题(每小题3分,共24分)
11、y=3(x﹣1)2﹣2
12、或
13、(答案不唯一)
14、6
15、
16、1
17、6
18、9
三、解答题(共66分)
19、(1)见解析;(2).
20、47.3米
21、(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.
22、(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.
23、(1)k≤1;(2)k的值为-,另一个根为-2;(1)k的值为1或1.
24、(1)证明见解析;(2).
25、(1)x1=-1,x2=4;(2)原式=
26、(3)或;A、;B、或
2023-2024学年浙江省嘉兴市上海外国语大秀洲外国语学校九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年浙江省嘉兴市上海外国语大秀洲外国语学校九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了计算的结果是等内容,欢迎下载使用。
浙江省嘉兴市秀洲片区2023-2024学年数学八上期末调研试题含答案: 这是一份浙江省嘉兴市秀洲片区2023-2024学年数学八上期末调研试题含答案,共8页。试卷主要包含了如图,直线与的图像交于点等内容,欢迎下载使用。
2023-2024学年浙江省嘉兴市秀洲区数学八上期末质量跟踪监视试题含答案: 这是一份2023-2024学年浙江省嘉兴市秀洲区数学八上期末质量跟踪监视试题含答案,共6页。试卷主要包含了下列图案中,不是轴对称图形的是,下列运算结果为的是,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。