浙江省台州市团队六校2023-2024学年数学九上期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30B.27C.14D.32
2.已知关于的方程,若,则该方程一定有一个根为( )
A.-1B.0C.1D.1或-1
3.如图所示,已知为的直径,直线为圆的一条切线,在圆周上有一点,且使得,连接,则的大小为( )
A.B.C.D.
4.三角形的一条中位线将这个三角形分成的一个小三角形与原三角形的面积之比等于( )
A.1:B.1:2C.1:4D.1:1.6
5.抛物线的顶点坐标为( )
A.B.C.D.
6.若分式的运算结果为,则在中添加的运算符号为( )
A.+B.-C.+或÷D.-或×
7.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
A.74B.44C.42D.40
8.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )
A.AB.BC.CD.D
9.若关于的方程有两个相等的实数根,则的值是( )
A.-1B.-3C.3D.6
10.如图,把正三角形绕着它的中心顺时针旋转60°后,是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.在一次夏令营中,小亮从位于点的营地出发,沿北偏东60°方向走了到达地,然后再沿北偏西30°方向走了若干千米到达地,测得地在地南偏西30°方向,则、两地的距离为_________.
12.如图,AD,BC相交于点O,AB∥CD.若AB=2,CD=3,则△ABO与△DCO的面积之比为_____.
13.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.
14.已知的半径点在内,则_________(填>或=,<)
15.若线段a、b满足,则的值为_____.
16.钟表的轴心到分钟针端的长为那么经过分钟,分针针端转过的弧长是_________________.
17.路灯(P点)距地面高9米,身高1.5的小艺站在距路灯的底部(O点)20米的A点,则此时小艺在路灯下的影子长是__________米.
18.如图,⊙O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为_________.
三、解答题(共66分)
19.(10分)如图,反比例函数的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别为1和﹣2,这两点的纵坐标之和为1.
(1)求反比例函数的表达式与一次函数的表达式;
(2)当点C的坐标为(0,﹣1)时,求△ABC的面积.
20.(6分)一个不透明的口袋里装着分别标有数字,,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.
(1)从中任取一球,求所抽取的数字恰好为负数的概率;
(2)从中任取一球,将球上的数字记为,然后把小球放回;再任取一球,将球上的数字记为,试用画树状图(或列表法)表示出点所有可能的结果,并求点在直线上的概率.
21.(6分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+PB的最小值为_____.
22.(8分)如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,;
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.
23.(8分)如图,⊙O的半径为,A、B为⊙O上两点,C为⊙O内一点,AC⊥BC,AC=,BC=.
(1)判断点O、C、B的位置关系;
(2)求图中阴影部分的面积.
24.(8分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).
(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点.
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
25.(10分)某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量(台)与售价(万元/台)之间存在函数关系:.
(1)设这种摘果机一期销售的利润为(万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?
(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?
26.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3, AF=2, 求AE的长.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、C
4、C
5、A
6、C
7、C
8、C
9、C
10、A
二、填空题(每小题3分,共24分)
11、
12、
13、1
14、<
15、
16、
17、2
18、6
三、解答题(共66分)
19、(1),y=x+1;(2)2.
20、(1)所抽取的数字恰好为负数的概率是;(2)点(x,y)在直线y=﹣x﹣1上的概率是.
21、
22、(1)y=x1+4x-1;(1)∴m=,-1,或-3时S四边形OBDC=1SS△BPD
23、(1)O、C、B三点在一条直线上,见解析;(2)
24、(1)点B的坐标为(1,0).
(2)①点P的坐标为(4,21)或(-4,5).
②线段QD长度的最大值为.
25、(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.
26、(1)答案见解析;(2).
浙江省台州市台州市白云学校2023-2024学年九年级数学第一学期期末调研模拟试题含答案: 这是一份浙江省台州市台州市白云学校2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共7页。试卷主要包含了如图所示的几何体,它的左视图是,的相反数是等内容,欢迎下载使用。
2023-2024学年浙江省台州市温岭市五校联考九上数学期末学业水平测试模拟试题含答案: 这是一份2023-2024学年浙江省台州市温岭市五校联考九上数学期末学业水平测试模拟试题含答案,共8页。
2023-2024学年浙江省台州市名校数学八上期末调研模拟试题含答案: 这是一份2023-2024学年浙江省台州市名校数学八上期末调研模拟试题含答案,共7页。试卷主要包含了某一次函数的图象经过点,下面的图形中对称轴最多的是,下列命题中,是真命题的是等内容,欢迎下载使用。