湖北省武汉江岸区七校联考2023-2024学年数学九上期末综合测试试题含答案
展开
这是一份湖北省武汉江岸区七校联考2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了下列标志中是中心对称图形的是,下列图形中是中心对称图形的共有等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为( )
A.B.C.D.
2.如图,在△中,,两点分别在边,上,∥.若,则为( )
A.B.C.D.
3.不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是( )
A.B.C.D.
4.下列标志中是中心对称图形的是( )
A.B.C.D.
5.如图工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是( )
A.两点之间线段最短B.两点确定一条直线
C.三角形具有稳定性D.长方形的四个角都是直角
6.下列图形中是中心对称图形的共有( )
A.1个B.2个C.3个D.4个
7.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是( )
A.(0,1)B.(2,﹣1)C.(4,1)D.(2,3)
8.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是( )
A.1B.2C.3D.4
9.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是( )
A.B.C.D.
10.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为( )
A.B.πC.2πD.4π
二、填空题(每小题3分,共24分)
11.若关于x的方程有两个不相等的实数根,则a的取值范围是________.
12.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.
13.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c; ③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.
14.已知a、b是一元二次方程x2+x﹣1=0的两根,则a+b=_____.
15.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.
16.抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积=__.
17.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为_____.
18.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.
三、解答题(共66分)
19.(10分)文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“ 亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:
(1)请直接写出_______,_______,第3组人数在扇形统计图中所对应的圆心角是_______度.
(2)请补全上面的频数分布直方图.
(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?
20.(6分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.
21.(6分)解方程:
(1)
(2)
22.(8分)为响应市政府关于“垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B:比较了解;C:了解较少;D:不了解”四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;
求______,并补全条形统计图;
若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;
已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.
23.(8分)请阅读下面材料:
问题:已知方程x1+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.
解:设所求方程的根为y,y=,所以x=1y
把x=1y代入已知方程,得(1y)1+1y-3=0
化简,得4y1+1y-3=0
故所求方程为4y1+1y-3=0
这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”解决下列问题:
(1)已知方程1x1-x-15=0,求一个关于y的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_________.
(1)已知方程ax1+bx+c=0(a≠0)有两个不相等的实数根,求一个关于y的一元二次方程,使它的根比已知方程根的相反数的一半多1.
24.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:,,,)
25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
26.(10分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习.随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)
20 20 28 15 20 25 30 20 12 13
30 25 15 20 10 10 20 17 24 26
“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:
频数分布表
请根据以上信息回答下列问题:
(1)在频数分布表中,a的值为 ,b的值为 ,并将频数分布直方图补充完整;
(2)求这20天访问王老师工作室的访问人次的平均数.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、B
5、C
6、B
7、C
8、A
9、D
10、A
二、填空题(每小题3分,共24分)
11、且
12、.
13、①④⑤⑥
14、-1
15、4
16、1
17、k=
18、1
三、解答题(共66分)
19、(1)25,20,126;(2)见解析;(2)60万人.
20、该县投入教育经费的年平均增长率为20%
21、(1),;(2)x1=2,x2=-1.
22、(1)20(2)500(3)
23、(1)1y1+y-15=0;(1).
24、51
25、 (1)抛物线的解析式为:y=﹣x1+x+1
(1)存在,P1(,2),P1(,),P3(,﹣)
(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
26、(1)7、1,直方图见解析;(2)20人次.
分组
频数(单位:天)
10≤x<15
4
15≤x<20
3
20≤x<25
a
25≤x<30
b
30≤x<35
2
合计
20
相关试卷
这是一份湖北省武汉东湖高新区六校联考2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了下列事件中是必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年湖北省武汉江岸区七校联考数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,若点等内容,欢迎下载使用。
这是一份2023-2024学年湖北省武汉市武昌七校数学九上期末综合测试试题含答案,共8页。试卷主要包含了计算的结果是等内容,欢迎下载使用。