湖北省随州市曾都区唐县2023-2024学年九年级数学第一学期期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( )
A.30°B.40°C.45°D.50°
2.如图,是等边三角形,点,,分别在,,边上,且若,则与的面积比为( )
A.B.C.D.
3.如图,正方形的边长为,动点,同时从点出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点运动终止,连接,设运动时间为,的面积为,则下列图象中能大致表示与的函数关系的是( )
A.B.
C.D.
4.如图,是二次函数图象的一部分,在下列结论中:①;②;③有两个相等的实数根;④;其中正确的结论有( )
A.1个B.2 个C.3 个D.4个
5.若点,,在反比例函数的图像上,则的大小关系是( )
A.B.C.D.
6. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9B.6C.4D.3
7.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是( )
A.k≥﹣1且k≠0B.k≥﹣1C.k≤1D.k≤1且k≠0
8.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是( ).
A.B.C.D.
9.在Rt△ABC中,,如果∠A=,,那么线段AC的长可表示为( ).
A.;B.;C.;D..
10.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是( )
A.开口向上B.对称轴是直线x=1C.顶点坐标是(-1,3)D.函数y有最小值
二、填空题(每小题3分,共24分)
11.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.
12.如图,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成一个圆锥,则圆锥的高为____.
13.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为________.
14.如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积(单位:与工作时间(单位:)之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是____________.
15.二次函数y=2(x﹣3)2+4的图象的对称轴为x=______.
16.如图,五边形是正五边形,若,则__________.
17.计算_________.
18.圆内接正六边形一边所对的圆周角的度数是__________.
三、解答题(共66分)
19.(10分)如图,在中,,,为外一点,将绕点按顺时针方向旋转得到,且点、、三点在同一直线上.
(1)(观察猜想)
在图①中, ;在图②中, (用含的代数式表示)
(2)(类比探究)
如图③,若,请补全图形,再过点作于点,探究线段,,之间的数量关系,并证明你的结论;
(3)(问题解决)
若,,,求点到的距离.
20.(6分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).
(1)tan∠DBE= ;
(2)求点F落在CD上时t的值;
(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;
(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.
21.(6分)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为10cm,点A,C,E在同一条直线上,且∠CAB=75°,如图1.
(1)求车架档AD的长;
(1)求车座点E到车架档AB的距离.
(结果精确到1 cm.参考数据: sin75°="0.966," cs75°=0.159,tan75°=3.731)
22.(8分)利用公式法解方程:x2﹣x﹣3=1.
23.(8分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
24.(8分)若抛物线y=ax2+bx﹣3的对称轴为直线x=1,且该抛物线经过点(3,0).
(1)求该抛物线对应的函数表达式.
(2)当﹣2≤x≤2时,则函数值y的取值范围为 .
(3)若方程ax2+bx﹣3=n有实数根,则n的取值范围为 .
25.(10分)某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入−成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
26.(10分)如图,双曲线经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.
(1)求m的值.
(2)求k的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、C
5、C
6、D
7、A
8、C
9、B
10、B
二、填空题(每小题3分,共24分)
11、6cm
12、
13、1
14、
15、1
16、72
17、
18、30°或150°
三、解答题(共66分)
19、(1);;(2),证明见解析;(3)点到的距离为或.
20、(1);(1)t=;(3)见解析;(4)t的值为或或或1.
21、(1)75cm(1)2cm
22、x1=,x2=.
23、此时快艇与岛屿C的距离是20nmile.
24、(1)y=x2﹣2x﹣3;(2)﹣1≤y≤5;(3)n≥﹣1.
25、(1)y=﹣2x+180;(2)W=﹣2x2+240x﹣5400;(3)当x=60时,W取得最大值,此时W=1.
26、 (1)m=2;(2)k的取值范围是﹣2<k<0.
售价x(元/千克)
40
50
60
销售量y(千克)
100
80
60
湖北省随州市随州市曾都区尚市镇中学心学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份湖北省随州市随州市曾都区尚市镇中学心学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了已知二次函数y=2,下列关系式中,是反比例函数的是,如图,△OAB∽△OCD,OA,的值等于等内容,欢迎下载使用。
2023-2024学年湖北省随州市曾都区九上数学期末检测试题含答案: 这是一份2023-2024学年湖北省随州市曾都区九上数学期末检测试题含答案,共8页。试卷主要包含了若一次函数y=ax+b,下面的函数是反比例函数的是等内容,欢迎下载使用。
湖北省随州市曾都区2023-2024学年八上数学期末教学质量检测模拟试题含答案: 这是一份湖北省随州市曾都区2023-2024学年八上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,我们规定等内容,欢迎下载使用。