湖南省郴州市第五完全中学2023-2024学年九上数学期末教学质量检测试题含答案
展开
这是一份湖南省郴州市第五完全中学2023-2024学年九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了下列四个数中是负数的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是( )
A.B.C.D.
2.如图,在菱形中,,,为中点,是上一点,为上一点,且,,交于点,关于下列结论,正确序号的选项是( )
①,②,③④
A.①②B.①②③C.①②④D.①③④
3.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子.在点钉在一起.并使它们保持垂直,在测直径时,把点靠在圆周上.读得刻度个单位,个单位,则圆的直径为( )
A.12个单位B.10个单位C.11个单位D.13个单位
4.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是( )
A.﹣1B.0C.1D.2
5.如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是( )
A.S1>S2B.S1<S2C.S1=S2D.不能确定
6.一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了次手,这次参加会议到会的人数是人,可列方程为:( )
A.B.C.D.
7.下列四个数中是负数的是( )
A.1B.﹣(﹣1)C.﹣1D.|﹣1|
8.如图,小明将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体,将这个几何体的侧面展开,得到的大致图形是( )
A.B.
C.D.
9.下列语句所描述的事件是随机事件的是( )
A.经过任意两点画一条直线B.任意画一个五边形,其外角和为360°
C.过平面内任意三个点画一个圆D.任意画一个平行四边形,是中心对称图形
10.如图,点A、B、C是⊙O上的点,∠AOB=70°,则∠ACB的度数是( )
A.30°B.35°C.45°D.70°
二、填空题(每小题3分,共24分)
11.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.
12.数据8,9,10,11,12的方差等于______.
13.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.
14.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.
15.若是关于的方程的一个根,则的值为_________________.
16..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.
17.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.
18.方程的根是___________.
三、解答题(共66分)
19.(10分)已知二次函数的图象经过点.
(1)当时,若点在该二次函数的图象上,求该二次函数的表达式;
(2)已知点,在该二次函数的图象上,求的取值范围;
(3)当时,若该二次函数的图象与直线交于点,,且,求的值.
20.(6分)如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位: ).
(1)直接写出上下两个长方休的长、宽、商分别是多少:
(2)求这个立体图形的体积.
21.(6分)如图,在与中,,且.
求证:.
22.(8分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出y1>y2 时,x的取值范围.
23.(8分)某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.1.
(1)求y关于x的函数关系式;
(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?
(3)若公司希望该产品一年的销售获利不低于17.1万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?
24.(8分)《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2 =____;
同种操作,如图3,S阴影3=1--()2-()3 =__________;
如图4,S阴影4=1--()2-()3-()4 =___________;
……若同种地操作n次,则S阴影n=1--()2-()3-…-()n =_________.
于是归纳得到:+()2+()3+…+()n =_________.
(理论推导)
(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.
解:设S=1+2+22+23+24+…+22015+22016,①
将①×2得:2S=2+22+23+24+…+22016+22017,②
由②-①得:2S—S=22017—1,即=22017-1.
即1+2+22+23+24+…+22015+22016=22017-1
根据上述材料,试求出+()2+()3+…+()n 的表达式,写出推导过程.
(规律应用)
(3)比较+++…… __________1(填“”、“”或“=”)
25.(10分)如图,是由两个等边三角形和一个正方形拼在-起的图形,请仅用无刻度的直尺按要求画图,
(1)在图①中画一个的角,使点或点是这个角的顶点,且以为这个角的一边:
(2)在图②画一条直线,使得.
26.(10分)如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、C
5、B
6、B
7、C
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、1
12、2
13、
14、1.
15、
16、甲
17、1或2
18、,.
三、解答题(共66分)
19、(1);(2);(3)或2.
20、(1)立体图形下面的长方体的长、宽、高分别为;上面的长方体的长、宽、高分别为;(2)这个立体图形的体积为.
21、见解析
22、(1)y1=-2x+4,y2=-;(2)x
相关试卷
这是一份2023-2024学年湖南省重点中学九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省衡阳市第九中学九上数学期末教学质量检测模拟试题含答案,共10页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份郴州市重点中学2023-2024学年九上数学期末检测模拟试题含答案,共8页。试卷主要包含了一元二次方程有实数解的条件,下列不是中心对称图形的是等内容,欢迎下载使用。