湖南省长沙市名校2023-2024学年数学九上期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.将抛物线y=(x-3)2-2向左平移( )个单位后经过点A(2,2)
A.1B.2C.3D.4
2.反比例函数与二次函数在同一直角坐标系的图像可能是( )
A.B.C.D.
3.关于x的一元二次方程的根的情况是()
A.有两个不相等的实数根B.没有实数根
C.有两个相等的实数根D.不确定
4.下列图标中,是中心对称图形的是( )
A.B.C.D.
5.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是( )
A.B.C.△ADE∽△ABCD.
6.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三连个月投放单车数量的月平均增长率为x,则所列方程正确的是( )
A.1000(1+x)2=440B.1000(1+x)2=1000
C.1000(1+2x)=1000+440D.1000(1+x)2=1000+440
7.已知(x2+y2)(x2+y2-1)-6=0,则 x2+y2 的值是( )
A.3或-2B.-3或2C.3D.-2
8.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )
A.2B.4C.6D.8
9.如图,嘉淇一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是( )
A.地在地的北偏西方向上B.地在地的南偏西方向上
C.D.
10.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,已知,,则_____.
12.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是______.
13.如图,在Rt△ABC中,∠BCA=90º,∠BAC=30º,BC=4,将Rt△ABC绕A点顺时针旋转90º得到Rt△ADE,则BC扫过的阴影面积为___.
14.已知依据上述规律,则
________.
15.分解因式:= __________
16.代数式有意义时,x应满足的条件是______.
17.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.
18.方程的解为________.
三、解答题(共66分)
19.(10分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cs67°≈0.38;≈1.73)
20.(6分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.
(1)求证:AB是⊙O的直径;
(2)判断DE与⊙O的位置关系,并加以证明;
(3)若⊙O的半径为3,∠BAC=60°,求DE的长.
21.(6分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).
(1)tan∠DBE= ;
(2)求点F落在CD上时t的值;
(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;
(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.
22.(8分)如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)
(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.
(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.
(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.
23.(8分)随着技术的发展进步,某公司2018年采用的新型原料生产产品.这种新型原料的用量y(吨)与月份x之间的关系如图1所示,每吨新型原料所生产的产品的售价z(万元)与月份x之间的关系如图2所示.已知将每吨这种新型原料加工成的产品的成本为20万元.
(1)求出该公司这种新型原料的用量y(吨)与月份x之间的函数关系式;
(2)若该公司利用新型原料所生产的产品当月都全部销售,求哪个月利润最大,最大利润是多少?
24.(8分)如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.
25.(10分)某水果商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
26.(10分)如图,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.
(1)画出位似中心O;
(2)△ABC与△A′B′C′的相似比为__________,面积比为__________.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、A
4、C
5、D
6、D
7、C
8、D
9、C
10、B
二、填空题(每小题3分,共24分)
11、105°
12、k≤且k≠﹣1
13、4π
14、.
15、
16、.
17、1.
18、
三、解答题(共66分)
19、A地到C地之间高铁线路的长为592km.
20、(1)证明见解析;(2)DE与⊙O相切;(3)
21、(1);(1)t=;(3)见解析;(4)t的值为或或或1.
22、(1)当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)m为1时△PCD的面积最大,最大面积是2;(3)n=m2﹣2m+6或n=m2﹣2m+1.
23、(1);(2)四月份利润最大,最大为1920元
24、AB=2,BC= .
25、(1)20%;(2)每千克应涨价5元.
26、(1)作图见解析;(2)2∶1;4∶1.
上海市虹口区名校2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份上海市虹口区名校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
2023-2024学年湖南省重点中学九上数学期末教学质量检测模拟试题含答案: 这是一份2023-2024学年湖南省重点中学九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。
2023-2024学年湖南省长沙市名校数学九年级第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年湖南省长沙市名校数学九年级第一学期期末达标检测模拟试题含答案,共9页。试卷主要包含了下表是二次函数的的部分对应值,用配方法解方程,方程应变形为等内容,欢迎下载使用。