湖南省长沙市长郡教育集团2023-2024学年数学九年级第一学期期末综合测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为( )
A.60°B.65°C.70°D.75°
2.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( )
A.B.C.D.
3.矩形、菱形、正方形都具有的性质是( )
A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相平分且相等
4.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是
A.5B.6C.7D.8
5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是( )
A.B.2C.6D.8
6.以下列长度的线段为边,可以作一个三角形的是( )
A.B.C.D.
7.抛物线的顶点坐标是( )
A.(2, 0)B.(-2, 0)C.(0, 2)D.(0, -2)
8.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为( )
A.5sin25°B.5tan65°C.5cs25°D.5tan25°
9.在比例尺为1:100000的城市交通图上,某道路的长为3厘米,则这条道路的实际距离为( )千米.
A.3B.30C.3000D.0.3
10.某商店以每件60元的价格购进一批货物,零售价为每件80元时,可以卖出100件(按相关规定零售价不能超过80元).如果零售价在80元的基础上每降价1元,可以多卖出10件,当零售价在80元的基础上降价x元时,能获得2160元的利润,根据题意,可列方程为( )
A.x(100+10x)=2160B.(20﹣x)(100+10x)=2160
C.(20+x)(100+10x)=2160D.(20﹣x)(100﹣10x)=2160
二、填空题(每小题3分,共24分)
11.连掷两次骰子,它们的点数都是4的概率是__________.
12.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是
13.化简:__________.
14.一组数据6,2,–1,5的极差为__________.
15.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=6cm,则线段BC=____cm.
16.是方程的解,则的值__________.
17.将二次函数y=x2﹣6x+8化成y=a(x+m)2+k的形式是_____.
18.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.
三、解答题(共66分)
19.(10分)已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.
(1)求抛物线的解析式和直线的解析式.
(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.
20.(6分)解方程:x2-5 = 4x.
21.(6分)已知关于x的一元二次方程x2-2x+m=0,有两个不相等的实数根.
⑴求实数m的最大整数值;
⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.
22.(8分)如图,在△ABC中,sinB=,csC=,AB=5,求△ABC的面积.
23.(8分)如图1,抛物线与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=1.
(1)求抛物线的解析式;
(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;
(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.
24.(8分)如图,是两棵树分别在同一时刻、同一路灯下的影子.
(1)请画出路灯灯泡的位置(用字母表示)
(2)在图中画出路灯灯杆(用线段表示);
(3)若左边树的高度是4米,影长是3米,树根离灯杆底的距离是1米,求灯杆的高度.
25.(10分)在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.
(1)若点P(﹣1,2)在图象G上,求n的值.
(2)当n=﹣1时.
①若Q(t,1)在图象G上,求t的值.
②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.
(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD的边与图象G有且只有三个公共点时,直接写出n的取值范围.
26.(10分)2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x元/千克,日销售量为y千克.
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、B
5、B
6、B
7、A
8、C
9、A
10、B
二、填空题(每小题3分,共24分)
11、
12、y2=.
13、0
14、7
15、18
16、
17、y=(x﹣3)2﹣1
18、4个小支干.
三、解答题(共66分)
19、(1)抛物线的表达式为:,直线的表达式为:;(2)存在,理由见解析;点或或或.
20、x1=5,x2=﹣1.
21、⑴m的最大整数值为m=1
(2)x12+x22-x1x2= 5
22、
23、(1);见解析;(2);见解析;(3)存在,点Q的坐标为:(﹣1,﹣1)或(﹣,﹣)或(,);详解解析.
24、(1)见解析;(2)见解析;(3)灯杆的高度是米
25、(1)n的值为﹣3或1;(2)①t=2±或﹣4或0,②﹣2﹣≤k≤﹣2;(3)当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.
26、(1)y=200﹣2x;(2)售价是68元/千克时,日销售利润最大,最大利润是1元
湖南省长沙市长郡教育集团联考2023-2024学年九年级上学期期末数学试题(含答案): 这是一份湖南省长沙市长郡教育集团联考2023-2024学年九年级上学期期末数学试题(含答案),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年湖南省长沙市长郡教育集团数学九上期末质量跟踪监视试题含答案: 这是一份2023-2024学年湖南省长沙市长郡教育集团数学九上期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知,一5的绝对值是等内容,欢迎下载使用。
2023-2024学年湖南省长沙市长郡教育集团八上数学期末经典试题含答案: 这是一份2023-2024学年湖南省长沙市长郡教育集团八上数学期末经典试题含答案,共7页。试卷主要包含了答题时请按要求用笔,若分式有意义,则取值范围是,下列命题等内容,欢迎下载使用。