湖南省长沙市雅实学校2023-2024学年数学九上期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )
A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交
C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离
2.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是( )
A.2B.1C.4D.2
3.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为( )
A.40°B.45°C.60°D.80°
4.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )
A.2B.1C.D.
5.下列二次函数中,如果函数图像的对称轴是轴,那么这个函数是( )
A.B.C.D.
6.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',以下说法中错误的是( )
A.△ABC∽△A'B'C'B.点C、点O、点C'三点在同一直线上C.AO:AA'=1∶2D.AB∥A'B'
7.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )
A.内含B.内切C.相交D.外切
8.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大:④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2;⑤<0,其中正确的结论有( )
A.2个B.3个C.4个D.5个
9.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是( )
A.4B.5C.6D.
10.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.在Rt△ABC中,∠C=90°,若sinA=,则csB=_____.
12.在平面坐标系中,正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,正方形的面积为______,延长交轴于点,作正方形,……按这样的规律进行下去,正方形的面积为______.
13.方程(x+5)2=4的两个根分别为_____.
14.二次函数图象的开口向__________.
15.当_____时,是关于的一元二次方程.
16.抛物线y=3(x﹣2)2+5的顶点坐标是_____.
17.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn∁nCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是_____,点Bn的坐标是_____.
18.已知,点A(-4,y1),B(,y2)在二次函数y=-x2+2x+c的图象上,则y1与y2的大小关系为________.
三、解答题(共66分)
19.(10分)如图,△ABC的边BC在x轴上,且∠ACB=90°.反比例函数y=(x>0)的图象经过AB边的中点D,且与AC边相交于点E,连接CD.已知BC=2OB,△BCD的面积为1.
(1)求k的值;(2)若AE=BC,求点A的坐标.
20.(6分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:
(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;
(2)写出左边那条抛物线的表达式;
(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?
21.(6分)已知:△ABC中,点D为边BC上一点,点E在边AC上,且∠ADE=∠B
(1) 如图1,若AB=AC,求证:;
(2) 如图2,若AD=AE,求证:;
(3) 在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=,则AB=____________.
22.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).
23.(8分)如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒1个单位长度的速度沿边向终点运动,设运动的时间为秒,.
(1)直接写出关于的函数解析式及的取值范围:_______;
(2)当时,求的值;
(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.
24.(8分)解方程:x2+11x+9=1.
25.(10分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
26.(10分)如图,在菱形中, 点是边上一点,延长至点,使, 连接求证:.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、A
4、C
5、C
6、C
7、C
8、C
9、C
10、D
二、填空题(每小题3分,共24分)
11、 .
12、11.25
13、x1=﹣7,x2=﹣3
14、下
15、
16、(2,5).
17、 (4,7) (2n﹣1,2n﹣1)
18、
三、解答题(共66分)
19、(1)k=12;(2)A(1,1).
20、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.
21、
22、(1)作图见解析;(2)作图见解析;(3)2π.
23、(1);(2),;(3)经过点的双曲线的值不变.值为.
24、x1=﹣1,x2=﹣2
25、(1);(2).
26、见解析.
湖南长沙市南雅中学2023-2024学年九上数学期末监测模拟试题含答案: 这是一份湖南长沙市南雅中学2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,反比例函数y=的图象位于,关于抛物线y=3,下列说法正确的是等内容,欢迎下载使用。
湖南省长沙市长雅实、西雅、雅洋2023-2024学年九年级数学第一学期期末调研试题含答案: 这是一份湖南省长沙市长雅实、西雅、雅洋2023-2024学年九年级数学第一学期期末调研试题含答案,共8页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
湖南省长沙市雅礼集团2023-2024学年九上数学期末调研模拟试题含答案: 这是一份湖南省长沙市雅礼集团2023-2024学年九上数学期末调研模拟试题含答案,共7页。试卷主要包含了抛物线y=﹣3,方程的根是等内容,欢迎下载使用。