![福建省宁德市名校2023-2024学年九上数学期末质量检测模拟试题含答案01](http://www.enxinlong.com/img-preview/2/3/15281988/0-1706151487796/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省宁德市名校2023-2024学年九上数学期末质量检测模拟试题含答案02](http://www.enxinlong.com/img-preview/2/3/15281988/0-1706151487824/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省宁德市名校2023-2024学年九上数学期末质量检测模拟试题含答案03](http://www.enxinlong.com/img-preview/2/3/15281988/0-1706151487841/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
福建省宁德市名校2023-2024学年九上数学期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是( )
A.B.C.D.
2.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出粒豆子,发现其中粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为( )粒.
A.B.C.D.
3.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )
A.5,6,-8B.5,-6,-8C.5,-6,8D.6,5,-8
4.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是( )
A.B.2C.6D.8
5.下列命题正确的是( )
A.圆是轴对称图形,任何一条直径都是它的对称轴
B.平分弦的直径垂直于弦,并且平分弦所对的弧
C.相等的圆心角所对的弧相等,所对的弦相等
D.同弧或等弧所对的圆周角相等
6.如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是( )
A.B.
C.D.
7.下列汽车标志中,可以看作是中心对称图形的是
A. B. C. D.
8.下列方程中不是一元二次方程的是( )
A.B.C.D.
9.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为
A.8B.C.4D.
10.某水库大坝高米,背水坝的坡度为,则背水面的坡长为( )
A.40米B.60米C.米D.米
二、填空题(每小题3分,共24分)
11.已知的半径点在内,则_________(填>或=,<)
12.在一个不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出_______颜色的球的可能性最大.
13.(2011•南充)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=_________度.
14.如图,菱形的顶点在轴正半轴上,顶点的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,则点的对应点的坐标为________.
15.如图,某小区规划在一个长30 m、宽20 m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78 m2,那么通道的宽应设计成多少m?设通道的宽为x m,由题意列得方程____________
16.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为_____.
17.分解因式:__________.
18.已知:如图,在平行四边形中,对角线、相较于点,在不添加任何辅助线的情况下,请你添加一个条件________________(只添加一个即可),使平行四边形成为矩形.
三、解答题(共66分)
19.(10分)如图,在中,,,.将绕点逆时针方向旋转60°得到,连接,求线段的长.
20.(6分)甲、乙两人用如图所示的转盘(每个转盘被分成面积相等的6个扇形)做游戏,转动转盘停止时,得到指针所在区域的数字,若指针落在分界线上,则不计入次数,重新转动转盘记数.
(1)任意转动转盘一次,求指针落在奇数区域的概率;
(2)若游戏规则如下:甲乙分别转盘一次,记下两次指针所在区域数字,若两次的数字为一奇一偶,则甲赢;若两次的数字同为奇数或同为偶数,则乙赢.请用列表法或画树状图的方法计算甲、乙获胜的概率,并说明这个游戏规则是否公平.
21.(6分)已知关于x的方程x2+(2m+1)x+m(m+1)=1.
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为x=1,求代数式m2+m﹣5的值.
22.(8分)如图已知一次函数y1=2x+5与反比例函数y2=(x<0)相交于点A,B.
(1)求点A,B的坐标;
(2)根据图象,直接写出当y₁≤y₂时x的取值范围.
23.(8分)如图,已知反比例函数(x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m>1, AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.
(1)写出反比例函数解析式;
(2)求证:∆ACB∽∆NOM;
(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.
24.(8分)为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:
(1)求样本容量及表格中、的值;
(2)请补全统计图;
(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.
25.(10分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;
(2)求出图中a的值;
(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.
26.(10分)已知关于x的一元二次方程.
(1)若是方程的一个解,写出、满足的关系式;
(2)当时,利用根的判别式判断方程根的情况;
(3)若方程有两个相等的实数根,请写出一组满足条件的、的值,并求出此时方程的根.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、C
4、B
5、D
6、C
7、A
8、C
9、A
10、A
二、填空题(每小题3分,共24分)
11、<
12、白
13、50
14、
15、(30-2x)(20-x)=6×1.
16、110°
17、
18、或(等,答案不唯一)
三、解答题(共66分)
19、
20、(1);(2)游戏规则公平,理由详见解析
21、(1)方程总有两个不相等的实数根;(2)-2.
22、(1)A点的坐标为(﹣,2),B点的坐标为(﹣1,3);(2)x≤﹣或﹣1≤x<1.
23、(1);(2)证明见解析;(3),.
24、(1),,;(2)见解析;(3)估计该校最喜欢足球的人数为75
25、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.
26、(1);(2)原方程有两个不相等的实数根;(3),,(答案不唯一).
福建省宁德市福鼎市2023-2024学年九上数学期末考试模拟试题含答案: 这是一份福建省宁德市福鼎市2023-2024学年九上数学期末考试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年江西省南昌市名校九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年江西省南昌市名校九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了下列实数中,介于与之间的是,已知,在中,,则边的长度为等内容,欢迎下载使用。
福建省福州市名校2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份福建省福州市名校2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法,已知2a=3b,不等式的解集是等内容,欢迎下载使用。