福建省厦门市第一中学2023-2024学年九上数学期末质量检测试题含答案
展开
这是一份福建省厦门市第一中学2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法,模型结论等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.将抛物线y=(x-3)2-2向左平移( )个单位后经过点A(2,2)
A.1B.2C.3D.4
2.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程( )
A.B.
C.D.
3.如图,在中,,垂足为点,一直角三角板的直角顶点与点重合,这块三角板饶点旋转,两条直角边始终与边分别相交于,则在运动过程中,与的关系是( )
A.一定相似B.一定全等C.不一定相似D.无法判断
4.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为,表示3次这样的试验必有1次针尖朝上.其中正确的是( )
A.①②B.②③C.①③D.①④
5.如图所示的图案是按一定规律排列的,照此规律,在第1至第2018个图案中“♣”共有( ) 个.
A.504B.505C.506D.507
6.如图,将△ABC绕点A顺时针旋转 60°得到△AED,若线段AB=3,则BE=( )
A.2B.3C.4D.5
7.反比例函数的图象经过点,若点在反比例函数的图象上,则n等于( )
A.-4B.-9C.4D.9
8.模型结论:如图①,正内接于,点是劣弧上一点,可推出结论.
应用迁移:如图②,在中,,,,是内一点,则点到三个顶点的距离和的最小值为( )
A.B.5C.D.
9.二次函数(,,为常数,且)中的与的部分对应值如下表:
以下结论:
①二次函数有最小值为;
②当时,随的增大而增大;
③二次函数的图象与轴只有一个交点;
④当时,.
其中正确的结论有( )个
A.B.C.D.
10.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是( )
A.86°B.94°C.107°D.137°
二、填空题(每小题3分,共24分)
11.路灯(P点)距地面高9米,身高1.5的小艺站在距路灯的底部(O点)20米的A点,则此时小艺在路灯下的影子长是__________米.
12.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____
13.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.
14.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.
15.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是_____.
16.一圆锥的侧面积为 ,底面半径为3,则该圆锥的母线长为________.
17.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.
18.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.
三、解答题(共66分)
19.(10分)如图,某中学准备建一个面积为300m2的矩形花园,它的一边利用图书馆的后墙,另外三边所围的栅栏的总长度是50m,求垂直于墙的边AB的长度?(后墙MN最长可利用25米)
20.(6分)阅读材料
材料1:若一个自然数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.
材料2:对于一个三位自然数,将它各个数位上的数字分别2倍后取个位数字,得到三个新的数字,,,我们对自然数规定一个运算:.
例如:是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2.
则.
请解答:
(1)一个三位的“对称数”,若,请直接写出的所有值, ;
(2)已知两个三位“对称数”,若能被11整数,求的所有值.
21.(6分)如图,已知三个顶点的坐标分别为,在给出的平面直角坐标系中;
(1)画出绕点顺时针旋转后得到的;并直接写出,的坐标;
(2)计算线段旋转到位置时扫过的图形面积.
22.(8分)已知关于的一元二次方程有两个不相等的实数根
(1)求的取值范围;
(2)若为正整数,且该方程的根都是整数,求的值.
23.(8分) “五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩
(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;
(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.
24.(8分)(1)解方程:
(2)如图已知⊙的直径,弦与弦平行,它们之间的距离为7,且,求弦的长.
25.(10分)综合与实践—探究正方形旋转中的数学问题
问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.
特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;
(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;
深入探究:(3)请从下面,两题中任选一题作答.我选择题.
A.在图2中连接和,请直接写出的值.
B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.
26.(10分)已知二次函数y=(x-1)2+n的部分点坐标如下表所示:
(1)求该二次函数解析式;
(2)完成上表,并在平面直角坐标系中画出函数图象
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、A
4、B
5、B
6、B
7、A
8、D
9、B
10、D
二、填空题(每小题3分,共24分)
11、2
12、8个
13、3
14、1.
15、
16、2
17、< < >
18、点B或点E或线段BE的中点.
三、解答题(共66分)
19、垂直于墙的边AB的长度为15米.
20、(1)515或565;(2)的值为4,8,96,108,144.
21、(1)见解析,;(2)2π
22、(1)k<(1)1
23、(1)共有12种等可能结果;(2)
24、(1);(2)1.
25、(1)见解析;(2);(3)A.,B..
26、(1)y=(x-1)2+1;(2)填表见解析,图象见解析.
相关试卷
这是一份福建省厦门市六校2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,方程的两根分别为,抛物线y=22﹣1的顶点坐标是等内容,欢迎下载使用。
这是一份2023-2024学年福建省厦门市莲花中学九上数学期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列计算,正确的是等内容,欢迎下载使用。
这是一份福建省厦门市第一中学2023-2024学年九上数学期末复习检测模拟试题含答案,共7页。