贵州省铜仁地区松桃县2023-2024学年九上数学期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.已知反比例函数的图象经过点(2,-2),则k的值为
A.4B.C.-4D.-2
2.关于x的一元二次方程x2+2x﹣a=0的一个根是1,则实数a的值为( )
A.0B.1C.2D.3
3.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为( ).
A.-1B.2C.-1或2D.-1或2或1
4.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )
A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)
5.反比例函数与在同一坐标系的图象可能为( )
A.B.C.D.
6.根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值(其中m>0>n),下列结论正确的( )
A.abc>0B.b2﹣4ac<0C.4a﹣2b+c<0D.a+b+c<0
7.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是( )
A.4B.5C.6D.7
8.下面的函数是反比例函数的是( )
A.B.C.D.
9.如图,将左边正方形剪成四块,恰能拼成右边的矩形,若a=2,则b的值是( )
A.B.C.+1D.+1
10.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )
A.小于B.等于C.大于D.无法确定
二、填空题(每小题3分,共24分)
11.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.
12.Rt△ABC中,∠C=90°,AB=10,,则BC的长为____________.
13.在平面直角坐标系中,点为原点,抛物线与轴交于点,以为一边向左作正方形,点为抛物线的顶点,当是锐角三角形时,的取值范围是__________.
14.写出一个具有性质“在每个象限内y随x的增大而减小”的反比例函数的表达式为________.
15.抛物线y=(m2-2)x2-4mx+n的对称轴是x=2,且它的最高点在直线y=x+2上,则m=________,n=________.
16.已知圆的半径是,则该圆的内接正六边形的面积是__________
17.若是关于x的一元二次方程的解,则代数式的值是________.
18.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为_____.
三、解答题(共66分)
19.(10分)在下列网格中,每个小正方形的边长均为1个单位,△ABC在网格中的位置如图所示:
(1)在图中画出△ABC先向右平移2个单位,再向上平移3个单位后的图形;
(2)若点A的坐标是(-4,-3),试在图中画出平面直角坐标系,坐标系的原点记作O;
(3)根据(2)的坐标系,作出以O为旋转中心,逆时针旋转90º后的图形,并求出点A一共运动的路径长.
20.(6分)(1)计算:.
(2)解方程:.
21.(6分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为_______.
22.(8分)如图,在中,,,,求和的长.
23.(8分)如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
24.(8分)如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
25.(10分)在正方形和等腰直角中,,是的中点,连接、.
(1)如图1,当点在边上时,延长交于点.求证:;
(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;
(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.
26.(10分)快乐的寒假临近啦!小明和小丽计划在寒假期间去镇江旅游.他们选取金山(记为)、焦山(记为)、北固山(记为)这三个景点为游玩目标.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),请用“画树状图”或“列表”的方法求他俩都选择金山为第一站的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、D
4、C
5、B
6、C
7、C
8、A
9、C
10、B
二、填空题(每小题3分,共24分)
11、1
12、1
13、或
14、y=(答案不唯一)
15、-1 -1
16、
17、1
18、1
三、解答题(共66分)
19、(1)见解析;(2)见解析;(3)图见解析,点A一共运动的路径长为
20、(1)5;(2)
21、2
22、,
23、(1)y=-x2+4x+5(2)m的值为7或9(3)Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5)
24、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
25、(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.
26、 “画树状图”或“列表”见解析;(都选金山为第一站).
x
…
0
1
2
4
…
y
…
m
k
m
n
…
贵州省毕节市黔西县2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份贵州省毕节市黔西县2023-2024学年九上数学期末学业质量监测模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,方程x,下列方程是一元二次方程的是,下列多边形一定相似的是等内容,欢迎下载使用。
2023-2024学年贵州省铜仁市松桃县数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年贵州省铜仁市松桃县数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知2a=3b等内容,欢迎下载使用。
2023-2024学年贵州省铜仁市松桃县数学九年级第一学期期末学业质量监测试题含答案: 这是一份2023-2024学年贵州省铜仁市松桃县数学九年级第一学期期末学业质量监测试题含答案,共7页。试卷主要包含了如图,该几何体的主视图是等内容,欢迎下载使用。