陕西省汉中市名校2023-2024学年九年级数学第一学期期末教学质量检测试题含答案
展开这是一份陕西省汉中市名校2023-2024学年九年级数学第一学期期末教学质量检测试题含答案,共6页。试卷主要包含了下列事件中,属于必然事件的是,抛物线y=﹣3等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.已知线段,,如果线段是线段和的比例中项,那么线段的长度是( ).
A.8;B.;C.;D.1.
2.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为( )
A.9B.12π﹣9C.D.6π﹣
3.下列二次根式中,是最简二次根式的是( )
A.B.C.D.
4.如图,矩形中,,交于点,,分别为,的中点.若,,则的度数为( )
A.B.C.D.
5.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是( )
A.B.
C.D.
6.下列事件中,属于必然事件的是( )
A.方程无实数解
B.在某交通灯路口,遇到红灯
C.若任取一个实数a,则
D.买一注福利彩票,没有中奖
7.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )
A.∠ABD=∠EB.∠CBE=∠CC.AD∥BCD.AD=BC
8.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为( )
A.OF=CFB.AF=BFC.D.∠DBC=90°
9.抛物线y=﹣3(x﹣1)2+3的顶点坐标是( )
A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(1,3)
10.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是( )
A.点OB.点PC.点MD.点N
二、填空题(每小题3分,共24分)
11.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;
12.一元二次方程有一个根为,二次项系数为1,且一次项系数和常数项都是非0的有理数,这个方程可以是_________.
13.已知抛物线的对称轴是y轴,且经过点(1,3)、(2,6),则该抛物线的解析式为_____.
14.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)
15.二次函数图像的顶点坐标为_________.
16.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是________.
17.在直角坐标平面内,抛物线在对称轴的左侧部分是______的.
18.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为,若点C的坐标为(4,1),点C的对应点为C′,则点C′的坐标为_____.
三、解答题(共66分)
19.(10分)矩形的长和宽分别是4cm, 3cm ,如果将长和宽都增加x cm ,那么面积增加ycm2
(1)求y与x之间的关系式.
(2)求当边长增加多少时,面积增加8 cm2 .
20.(6分)用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18m
(1)若围成的面积为72m2,球矩形的长与宽;
(2)菜园的面积能否为120m2,为什么?
21.(6分)如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.
22.(8分)(1)已知关于x的一元二次方程x2+(a+3)x+a+1=1.求证:无论a取何值,原方程总有两个不相等的实数根:
(2)已知:二次函数y=ax2+bx+c(a≠1)中的x和y满足下表:
①观察上表可求得m的值为 ;
②试求出这个二次函数的解析式.
23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
24.(8分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),
(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;
(Ⅱ)不论a取何实数,该抛物线都经过定点H.
①求点H的坐标;
②证明点H是所有抛物线顶点中纵坐标最大的点.
25.(10分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价之间的函数关系式;
(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?
(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?
26.(10分)已知:中,.
(1)求作:的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)
(2)若的外接圆的圆心到边的距离为4,,求的面积.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、C
4、A
5、B
6、A
7、C
8、A
9、D
10、B
二、填空题(每小题3分,共24分)
11、6
12、
13、y=x1+1
14、1
15、(,)
16、2+.
17、下降
18、或
三、解答题(共66分)
19、(1)y=(4+x)(3+x)-12=x2+7x;(2)边长增加1cm时,面积增加8 cm2.
20、(1)矩形的长为12米,宽为6米;(2)面积不能为120平方米,理由见解析
21、不需要采取紧急措施,理由详见解析.
22、(2)证明见解析;(2)①3;②y=(x﹣2)2﹣2.
23、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.
24、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.
25、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元
26、 (1)详见解析;(2)
x
…
﹣1
1
1
2
3
…
y
…
3
1
﹣1
1
m
…
销售量y(千克)
…
34.8
32
29.6
28
…
售价x(元/千克)
…
22.6
24
25.2
26
…
相关试卷
这是一份陕西省2023-2024学年九年级数学第一学期期末教学质量检测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,要使式子有意义,则x的值可以是,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
这是一份2023-2024学年甘肃省白银市名校数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份陕西省汉中市2023-2024学年九上数学期末检测试题含答案,共8页。试卷主要包含了反比例函数的图象分布的象限是等内容,欢迎下载使用。