驻马店市重点中学2023-2024学年九上数学期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,已知△ABC的三个顶点均在格点上,则csA的值为( )
A.B.C.D.
2.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为( )
A.B.C.D.
3.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为( )(参考数据:sin40°≈0.64,cs40°≈0.77,tan40°≈0.84).
A.5.1米B.6.3米C.7.1米D.9.2米
4.如图是某个几何体的三视图,该几何体是( )
A.长方体B.圆锥C.三棱柱D.圆柱
5.如图,直线y=x+3与x、y轴分别交于A、B两点,则cs∠BAO的值是( )
A.B.C.D.
6.关于x的方程x2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是( )
A.﹣5B.5C.﹣2D.2
7.已知矩形ABCD,下列结论错误的是( )
A.AB=DCB.AC=BDC.AC⊥BDD.∠A+∠C=180°
8.已知抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),C(-5,y 1),D(5,y 2)四点,则y1与y2的大小关系是( )
A.y1>y2B.y1=y2C.y1
A.B.C.D.
10.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )
A.1个B.2个C.3个D.4个
二、填空题(每小题3分,共24分)
11.已知,则________
12.线段,的比例中项是______.
13.如图,在中,,于点,,,则_________;
14.一个多边形的内角和为900°,这个多边形的边数是____.
15.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=____.
16.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.
17.如图、正比例函数与反比例函数的图象交于(1,2),则在第一象限内不等式的解集为_____________.
18.已知△ABC与△DEF是两个位似图形,它们的位似比为,若,那么________
三、解答题(共66分)
19.(10分)如图,AB为⊙O的直径,点C为⊙O上一点,CH⊥AB于H,∠CAB=30°.
(1)如图1,求证:AH=3BH.
(2)如图2,点D为AB下方⊙O上一点,点E为AD上一点,若∠BOE=∠CAD,连接BD,求证:OE=BD.
(3)如图3,在(2)的条件下,连接CE,若CE⊥AD,OA=14,求BD的长.
20.(6分)化简分式,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.
21.(6分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.
小丽;如果以每千克10元的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以每千克13元的价格销售,那么每天可获取利润750元.
(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;
(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?
22.(8分)某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:
⑴求y与x之间的函数关系式,并写出自变量x的取值范围;
⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg?
⑶设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?
23.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(-2,-2) , B(-4,-1) , C(-4,-4).
(1) 画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;
(2) 将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.
24.(8分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.
(1)请直接写出与之间的函数关系式和自变量的取值范围;
(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?
25.(10分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.
已知:⊙O及⊙O外一点P.
求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.
作法:如图,
①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;
②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;
③作直线PA和直线PB.
所以直线PA和PB就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵OP是⊙Q的直径,
∴ ∠OAP=∠OBP=________°( )(填推理的依据).
∴PA⊥OA,PB⊥OB.
∵OA,OB为⊙O的半径,
∴PA,PB是⊙O的切线.
26.(10分)如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(- 3,4),点B的坐标为(6,n).
(1)求该反比例函数和一次函数的解析式;
(2)连接OB,求△AOB 的面积;
(3)在x轴上是否存在点P,使△APC是直角三角形. 若存在,求出点P的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、A
4、D
5、A
6、C
7、C
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、
12、
13、
14、1
15、m
16、1.
17、x>1
18、1
三、解答题(共66分)
19、 (1)证明见解析;(2)证明见解析;(3)BD=2.
20、;x=2时,原式=.
21、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.
22、(1)y=-2x+1,10≤x≤2;(2)16元/kg;(3)W=-2(x-20)2+200,2元,192元.
23、(1)详见解析;(2,-2);(2)详见解析;(-4,4)
24、(1)(2)当x=52时,w有最大值为2640.
25、(1)补全图形见解析;(2)90;直径所对的圆周角是直角.
26、(1)反比例函数的解析式为y=﹣ ; 一次函数的解析式为y=﹣x+2; (2);(3)存在,满足条件的P点坐标为(﹣3,0)、(﹣,0).
内江市重点中学2023-2024学年九上数学期末调研模拟试题含答案: 这是一份内江市重点中学2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了一人乘雪橇沿如图所示的斜坡等内容,欢迎下载使用。
2023-2024学年海南省重点中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年海南省重点中学九上数学期末调研模拟试题含答案,共8页。试卷主要包含了下列方程是一元二次方程的是,若,那么的值是等内容,欢迎下载使用。
2023-2024学年德宏市重点中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年德宏市重点中学九上数学期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。