2023-2024学年山东省济宁兖州区七校联考数学九上期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程=kx+b的解为( )
A.-2,1B.1,1C.-2,-2D.无法确定
2.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为( )
A.B.
C.D.
3.如图,菱形中,过顶点作交对角线于点,已知,则的大小为( )
A.B.C.D.
4.如图,是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是直线x=1对于下列说法:①abc<0;②2a+b=0;③3a+c>0; ④当﹣1<x<3时,y>0;⑤a+b>m(am+b)(m≠1),其中正确有( )
A.1个B.2个C.3个D.4个
5.一元二次方程x2﹣3x﹣4=0的一次项系数是( )
A.1B.﹣3C.3D.﹣4
6.我国古代数学名著《孙子算经》中记载了一道大题,大意是:匹马恰好拉了片瓦,已知匹小马能拉片瓦,匹大马能拉片瓦,求小马、大马各有多少匹,若设小马有匹,大马有匹,依题意,可列方程组为( )
A.B.
C.D.
7.二次函数y=(x﹣1)2+2,它的图象顶点坐标是( )
A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,2)
8.顺次连接四边形ABCD各边的中点,所得四边形是( )
A.平行四边形
B.对角线互相垂直的四边形
C.矩形
D.菱形
9.反比例函数的图像经过点,,则下列关系正确的是( )
A.B.C.D.不能确定
10.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为( )
A.B.C.D.
11.如图,在⊙O中,若点C是 的中点,∠A=50°,则∠BOC=( )
A.40°B.45°C.50°D.60°
12.将6497.1亿用科学记数法表示为( )
A.6.4971×1012B.64.971×1010C.6.5×1011D.6.4971×1011
二、填空题(每题4分,共24分)
13.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.
14.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.
15.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.
16.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是____ cm².(结果保留).
17.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是______厘米.
18.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
三、解答题(共78分)
19.(8分)已知关于的一元二次方程有两个不相等的实数根
(1)求的取值范围;
(2)若为正整数,且该方程的根都是整数,求的值.
20.(8分)如图,在四边形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点.
(1)求点的坐标和反比例函数的解析式;
(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?
21.(8分)如图,双曲线经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.
(1)求m的值.
(2)求k的取值范围.
22.(10分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余3位同学中随机选取1位,则恰好选中乙同学的概率是 .
(2)请用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.
23.(10分)如图,直线经过⊙上的点,直线与⊙交于点和点,与⊙交于点,连接,.已知,,,.
(1)求证:直线是⊙的切线;
(2)求的长.
24.(10分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是 .
(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.
(3)求点P(x,y)在函数y=﹣x+5图象上的概率.
25.(12分)(1)2y2+4y=y+2(用因式分解法)
(2)x2﹣7x﹣18=0(用公式法)
(3)4x2﹣8x﹣3=0(用配方法)
26.(12分)已知抛物线的对称轴为直线,且经过点
(1)求抛物线的表达式;
(2)请直接写出时的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、D
4、C
5、B
6、A
7、D
8、A
9、B
10、B
11、A
12、D
二、填空题(每题4分,共24分)
13、22.5
14、
15、3000(1+ x)2=1
16、15π
17、
18、等
三、解答题(共78分)
19、(1)k<(1)1
20、(1);(1)点恰好落在双曲线上
21、 (1)m=2;(2)k的取值范围是﹣2<k<0.
22、(1);(2)
23、(1)见解析;(2)
24、(1);(2)共12种情况;(3)
25、(1)y1=﹣2,y2=;(2)x1=9,x2=﹣2;(3)x1=1+,x2=1﹣.
26、(1);(2)或
广东省金平区六校联考2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份广东省金平区六校联考2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了不等式组的解集在数轴上表示为,如图,中,,若,,则边的长是等内容,欢迎下载使用。
2023-2024学年山东省济宁市兖州市数学九上期末监测试题含答案: 这是一份2023-2024学年山东省济宁市兖州市数学九上期末监测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中是不可能事件的是,已知,则的值是,下列事件为必然事件的是等内容,欢迎下载使用。
2023-2024学年湖北省武汉青山区七校联考数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年湖北省武汉青山区七校联考数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列成语表示随机事件的是,下列结论正确的是等内容,欢迎下载使用。