2023-2024学年山东省泰安市大津口中学九上数学期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.方程5x2﹣2=﹣3x的二次项系数、一次项系数、常数项分别是( )
A.5、3、﹣2B.5、﹣3、﹣2C.5、3、2D.5、﹣3、2
2.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x,那么下面列出的方程正确的是( )
A.180(1+x)=300B.180(1+x)2=300
C.180(1﹣x)=300D.180(1﹣x)2=300
3.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为( )
A.300(1+x%)2=950B.300(1+x2)=950C.300(1+2x)=950D.300(1+x)2=950
4.已知正比例函数y=kx的图象经过第二、四象限,则一次函数y=kx﹣k的图象可能是图中的( )
A.B.
C.D.
5.如图,将图形用放大镜放大,应该属于( ).
A.平移变换B.相似变换C.旋转变换D.对称变换
6.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是( )
A.2B.4C.6D.8
7.一组数据0、-1、3、2、1的极差是( )
A.4B.3C.2D.1
8.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于( )
A.B.C.D.
9.下列对二次函数y=x2﹣x的图象的描述,正确的是( )
A.开口向下B.对称轴是y轴
C.经过原点D.在对称轴右侧部分是下降的
10.四张背面完全相同的卡片,正面分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为( )
A.1B.C.D.
11.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30°B.40°C.50°D.60°
12.二次函数()的大致图象如图所示,顶点坐标为,点是该抛物线上一点,若点是抛物线上任意一点,有下列结论:
①;
②若,则;
③若,则;
④若方程有两个实数根和,且,则.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
二、填空题(每题4分,共24分)
13.点A(-2,y1),B(-1,y2)都在反比例函数y=- 图象上,则y1 _____________ y2 (选填 “ ﹤” , “>”或” = ”)
14.已知关于的方程的一个解为,则m=_______.
15.如图,△ABC中,DE∥BC,,△ADE的面积为8,则△ABC的面积为______
16.如图,AB是⊙O的直径,弦CD⊥AB于点E,若∠CDB=30°,⊙O的半径为5cm则圆心O到弦CD的距离为_____.
17.若正六边形外接圆的半径为4,则它的边长为_____.
18.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).
三、解答题(共78分)
19.(8分)综合与探究
如图,在平面直角坐标系中,点的坐标分别为,点在轴上,其坐标为,抛物线经过点为第三象限内抛物线上一动点.
求该抛物线的解析式.
连接,过点作轴交于点,当的周长最大时,求点的坐标和周长的最大值.
若点为轴上一动点,点为平面直角坐标系内一点.当点构成菱形时,请直接写出点的坐标.
20.(8分)如图,在△ABC中,D为AB边上一点,∠B=∠ACD.
(1)求证:△ABC∽△ACD;
(2)如果AC=6,AD=4,求DB的长.
21.(8分)已知关于x的一元二次方程.
(1)当m为何值时,方程有两个不相等的实数根?
(2)设方程两根分别为、,且2、2分别是边长为5的菱形的两条对角线,求m的值.
22.(10分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).
(1)求反比例函数和一次函数的解析式;
(2)求ΔAOC的面积;
(3)直接写出时的x的取值范围 (只写答案)
23.(10分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.
24.(10分)如图,在中,,,点从点出发,沿以每秒的速度向点运动,同时点从点出发,沿以每秒的速度向点运动,设运动的时间为秒.
(1)当为何值时,与相似?
(2)当时,请直接写出的值.
25.(12分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)
已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.
(1)乙同学这5次数学练习成绩的平均数为 分,方差为 分;
(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.
26.(12分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、D
4、A
5、B
6、D
7、A
8、C
9、C
10、B
11、C
12、B
二、填空题(每题4分,共24分)
13、<
14、0
15、18.
16、2.5cm.
17、1
18、=
三、解答题(共78分)
19、(1);(2)P(2,);(3)点的坐标为或或或.
20、(1)见解析;(2)DB=5.
21、(1);(2)
22、(1),;(2)C(-3,0), S=6;(3)或
23、 (1)y关于x的函数关系式是y=﹣x2+16x;(2)当x是6或11时,围成的养鸡场面积为61平方米;(3)不能围成面积为71平方米的养鸡场;理由见解析.
24、(1)当或时,与相似;(2)
25、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;
乙的数学成绩在100分以上(含100分)的次数更多.
26、(1)证明见解析;(2)阴影部分面积为
测试日期
11月5日
11月20日
12月5日
12月20日
1月3日
甲
96
97
100
103
104
乙
100
95
100
105
100
山东省泰安市泰山区大津口中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案: 这是一份山东省泰安市泰山区大津口中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共7页。
2023-2024学年山东省泰安市泰前中学九上数学期末复习检测模拟试题含答案: 这是一份2023-2024学年山东省泰安市泰前中学九上数学期末复习检测模拟试题含答案,共8页。
山东省青岛市沧口2中学2023-2024学年九上数学期末检测模拟试题含答案: 这是一份山东省青岛市沧口2中学2023-2024学年九上数学期末检测模拟试题含答案,共6页。试卷主要包含了一组数据等内容,欢迎下载使用。