2023-2024学年山东省青岛即墨市九上数学期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1. “2020年的6月21日是晴天”这个事件是( )
A.确定事件B.不可能事件C.必然事件D.不确定事件
2.在同一直角坐标系中,反比例函数y=与一次函数y=ax+b的图象可能是( )
A.B.
C.D.
3.有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )
A.甲B.乙C.丙D.丁
4.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,2)B.(4,1)C.(3,1)D.(4,2)
5.下列结论中,错误的有:( )
①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;
③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.
A.1个B.2个C.3个D.4个
6.已知△ABC∽△DEF, ∠A=85°;∠F=50°,那么csB的值是( )
A.1B.C.D.
7.下列事件是必然事件的是( )
A.明天太阳从西方升起
B.打开电视机,正在播放广告
C.掷一枚硬币,正面朝上
D.任意一个三角形,它的内角和等于180°
8.二次函数y = -2(x + 1)2+5的顶点坐标是( )
A.-1B.5C.(1, 5)D.(-1, 5)
9.如图是我们学过的反比例函数图象,它的表达式可能是( )
A.B.C.D.
10.函数在同一直角坐标系内的图象大致是( )
A.B.C.D.
11.已知是方程的一个根,则方程的另一个根为( )
A.-2B.2C.-3D.3
12.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程( )
A.B.C.
D.
二、填空题(每题4分,共24分)
13.如图,个全等的等腰三角形的底边在同一条直线上,底角顶点依次重合.连接第一个三角形的底角顶点和第个三角形的顶角顶点交于点,则_________.
14.四边形ABCD是☉O的内接四边形,,则的度数为____________.
15.在一个不透明的袋中装有黑色和红色两种颜色的球共个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于,则可估计这个袋中红球的个数约为__________.
16.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=_____.
17.已知=4,=9,是的比例中项,则=____.
18.已知a、b、c满足,a、b、c都不为0,则=_____.
三、解答题(共78分)
19.(8分)如图,在平行四边形中,过点作,垂足为,连接,为上一点,且.
(1)求证:.
(2)若,,,求的长.
20.(8分)爸爸有一张“山西大剧院”的演出门票,计划通过“掷筹码”的游戏将门票奖励给哥哥或者弟弟,游戏规则如下:准备两个质量均匀的筹码,在第一个筹码的一面画上“×”,另一面画上“○”;在第二个筹码的一面画上“○”,另一面画上“△”.随机掷出两个筹码,当筹码落地后,若朝上的一面都是“○”,则哥哥获得门票;否则,弟弟获得门票.你认为这个游戏公平吗?说明理由.
21.(8分)如图,的直径垂直于弦,垂足为,为延长线上一点,且.
(1)求证:为的切线;
(2)若,,求的半径.
22.(10分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.
(1)求反比例函数和一次函数的解析式;
(2)连接OB,求△AOB的面积.
23.(10分)如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.
(1)探索:CE与BF有何数量关系和位置关系?并说明理由;
(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.
24.(10分)如图,在平面直角坐标系中,已知是等边三角形,点的坐标是,点在第一象限,的平分线交轴于点,把绕着点按逆时针方向旋转,使边与重合,得到,连接.求:的长及点的坐标.
25.(12分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.
(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.
(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.
26.(12分)如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)
(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.
(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.
(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、D
4、A
5、B
6、C
7、D
8、D
9、B
10、C
11、B
12、D
二、填空题(每题4分,共24分)
13、n
14、130°
15、
16、
17、±6;
18、
三、解答题(共78分)
19、(1)见解析;(2)
20、游戏不公平,理由见解析.
21、(1)见解析;(2)
22、(1)y=﹣,y=﹣x﹣1;(2)
23、(1)CE=BF,CE⊥BF,理由见解析;(2)
24、,点的坐标为.
25、(1);(2)两次所抽取的卡片恰好都是轴对称图形的概率为.
26、(1)当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)m为1时△PCD的面积最大,最大面积是2;(3)n=m2﹣2m+6或n=m2﹣2m+1.
山东省青岛市西海岸新区2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份山东省青岛市西海岸新区2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了定义新运算等内容,欢迎下载使用。
山东省青岛市即墨市2023-2024学年九年级数学第一学期期末检测模拟试题含答案: 这是一份山东省青岛市即墨市2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了图中三视图所对应的直观图是,式子有意义的的取值范围,已知反比例函数y=等内容,欢迎下载使用。
2023-2024学年山东省青岛市胶州市九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年山东省青岛市胶州市九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,解方程,选择最适当的方法是,一元二次方程有实数解的条件等内容,欢迎下载使用。