2023-2024学年山东省青岛西海岸新区第七中学数学九上期末联考模拟试题含答案
展开
这是一份2023-2024学年山东省青岛西海岸新区第七中学数学九上期末联考模拟试题含答案,共8页。试卷主要包含了如图,厂房屋顶人字架,如图,点A,B的坐标分别为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()
A.1B.2C.1D.4
2.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是( )
A.2(1+x)2=2.88B.2x2=2.88C.2(1+x%)2=2.88D.2(1+x)+2(1+x)2=2.88
3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+5
4.已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为( )
A.4个B.3个C.2个D.1个
5.抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示.下列叙述中:①;②关于的方程的两个根是;③;④;⑤当时,随增大而增大.正确的个数是( )
A.4B.3C.2D.1
6.如图,厂房屋顶人字架(等腰三角形)的跨度BC=10m,∠B=36°,D为底边BC的中点,则上弦AB的长约为( )(结果保留小数点后一位sin36°≈0.59,cs36°≈0.81,tan36°≈0.73)
A.3.6mB.6.2mC.8.5mD.12.4m
7.有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,则AF的长为( )
A.2B.2﹣2C.4﹣2D.2﹣
8.若关于的一元二次方程有一个根为0,则的值( )
A.0B.1或2C.1D.2
9.已知点在抛物线上,则点关于抛物线对称轴的对称点坐标为( )
A.B.C.D.
10.如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为( )
A.一直不变B.一直变大
C.先变小再变大D.先变大再变小
11.如图,是内两条互相垂直的直径,则的度数是( )
A.B.C.D.
12.下列命题中,为真命题的是( )
A.同位角相等B.相等的两个角互为对顶角
C.若a2=b2,则a=bD.若a>b,则﹣2a<﹣2b
二、填空题(每题4分,共24分)
13.如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.
14.小球在如图6所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是____.
15.方程的解是_______.
16.反比例函数的图象经过点,,点是轴上一动点.当的值最小时,点的坐标是__________.
17.如图,双曲线与⊙O在第一象限内交于P、Q 两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.
18.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为_____.
三、解答题(共78分)
19.(8分)已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积.
20.(8分)如图,在平行四边形中,、分别为边、的中点,是对角线,过点作交的延长线于点.
(1)求证:;
(2)若,求证:四边形是菱形.
21.(8分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶1.设BG的长为1x米.
(1)用含x的代数式表示DF= ;
(1)x为何值时,区域③的面积为180平方米;
(3)x为何值时,区域③的面积最大?最大面积是多少?
22.(10分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小黄出发0.5小时时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)小黄出发1.5小时时,离目的地还有多少千米?
23.(10分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=3m,BD=9m,求旗杆AB的高.
24.(10分)如图1为放置在水平桌面上的台灯,底座的高为,长度均为的连杆,与始终在同一平面上.当,时,如图2,连杆端点离桌面的高度是多少?
25.(12分)(1)计算:
(2)解方程:
26.(12分)对于平面直角坐标系xOy中的点P和图形G,给出如下定义:将点P沿向右或向上的方向平移一次,平移距离为d(d>0)个长度单位,平移后的点记为P′,若点P′在图形G上,则称点P为图形G的“达成点”.特别地,当点P在图形G上时,点P是图形G的“达成点”.例如,点P(﹣1,0)是直线y=x的“达成点”.
已知⊙O的半径为1,直线l:y=﹣x+b.
(1)当b=﹣3时,
①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三点中,是直线l的“达成点”的是:_____;
②若直线l上的点M(m,n)是⊙O的“达成点”,求m的取值范围;
(2)点P在直线l上,且点P是⊙O的“达成点”.若所有满足条件的点P构成一条长度不为0的线段,请直接写出b的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、A
4、B
5、B
6、B
7、D
8、D
9、A
10、D
11、C
12、D
二、填空题(每题4分,共24分)
13、或
14、
15、
16、
17、1.
18、5π
三、解答题(共78分)
19、(1)y=﹣x2+4x+5;(2)1.
20、(1)见解析;(2)见解析
21、(1)48-11x;(1)x为1或3;(3)x为1时,区域③的面积最大,为140平方米
22、(1)2千米;(2)y=90x﹣24(0.8≤x≤2);(3)3千米
23、旗杆AB的高为2m
24、
25、(1);(2)x 1=1,.
26、(1)①A,B;②﹣4≤m≤﹣2或﹣1≤m≤1;(2)﹣2≤b<.
相关试卷
这是一份山东省青岛市西海岸新区2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了定义新运算等内容,欢迎下载使用。
这是一份2023-2024学年山东省青岛市西海岸新区四中学八上数学期末检测模拟试题含答案,共7页。试卷主要包含了若分式的值为0,则的值是,是同类二次根式的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省青岛西海岸新区第四中学八上数学期末达标检测试题含答案,共7页。试卷主要包含了下列命题是真命题的是,一次函数的图象不经过,下列关系式中,不是的函数的是,下列分式中,最简分式的个数是,如图所示等内容,欢迎下载使用。