2023-2024学年广东省广州市番禺区数学九上期末学业质量监测模拟试题含答案
展开这是一份2023-2024学年广东省广州市番禺区数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为( )
A.64B.72C.80D.96
2.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:
今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( )
A.甲B.乙C.丙D.丁
3.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是( )
A.-1B.1C.2D.3
4.已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是假命题的的一个值可以是( )
A.1B.2C.3D.4
5.(2011?德州)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是( )
A.a4>a2>a1B.a4>a3>a2
C.a1>a2>a3D.a2>a3>a4
6.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A.B.
C.D.
7.已知二次函数y ax2 2ax 3a2 3(其中x是自变量),当x 2时,y随x的增大而增大,且3 x 0时,y的最大值为9,则a的值为( ).
A.1或B.或C.D.1
8.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是( )
A.3B.﹣3C.1D.﹣1
9.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为( )
A.6个B.8个C.9个D.12个
10.如图,在中,是边上一点,延长交的延长线于点,若,则等于( )
A.B.C.D.
11.从拼音“nanhai”中随机抽取一个字母,抽中a的概率为( )
A.B.C.D.
12.如图,在线段AB上有一点C,在AB的同侧作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD与线段AE,线段CE分别交于点F,G.对于下列结论:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,则2AD2=DF·DG.其中正确的是( )
A.①②③④B.①②③C.①③④D.①②
二、填空题(每题4分,共24分)
13.用配方法解方程时,可配方为,其中________.
14.如右图是一个立体图形的三视图,那么这个立体图形的体积为______.
15.如图,在矩形中,,以点为圆心,以的长为半径画弧交于,点恰好是中点,则图中阴影部分的面积为___________.(结果保留)
16.如图,在平行四边形ABCD中,E为CB延长线上一点,且BE:CE=2:5,连接DE交AB于F,则=_____________
17.如图,在平面直角坐标系中,点A 是函数 图象上的点,AB⊥x 轴,垂足为 B,若 △ABO的面积为3,则的值为__.
18.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.
三、解答题(共78分)
19.(8分)已知抛物线.
(1)当x为何值时,y随x的增大而减小;
(2)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出平移后的抛物线表达式.
20.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.
八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.
整理数据:
分析数据:
应用数据:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.
21.(8分)在等腰直角三角形中,,,点在斜边上(),作,且,连接,如图(1).
(1)求证:;
(2)延长至点,使得,与交于点.如图(2).
①求证:;
②求证:.
22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
(1)请画出将△ABC向下平移5个单位后得到的△A1B1C1;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
23.(10分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,,摆动臂可绕点旋转,.
(1)在旋转过程中
①当、、三点在同一直线上时,求的长,
②当、、三点为同一直角三角形的顶点时,求的长.
(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,如图2,此时,,求的长.
(3)若连接(2)中的,将(2)中的形状和大小保持不变,把绕点在平面内自由旋转,分别取、、的中点、、,连接、、、随着绕点在平面内自由旋转, 的面积是否发生变化,若不变,请直接写出的面积;若变化,的面积是否存在最大与最小?若存在,请直接写出面积的最大值与最小值,(温馨提示)
24.(10分)甲、乙两人用如图所示的转盘(每个转盘被分成面积相等的6个扇形)做游戏,转动转盘停止时,得到指针所在区域的数字,若指针落在分界线上,则不计入次数,重新转动转盘记数.
(1)任意转动转盘一次,求指针落在奇数区域的概率;
(2)若游戏规则如下:甲乙分别转盘一次,记下两次指针所在区域数字,若两次的数字为一奇一偶,则甲赢;若两次的数字同为奇数或同为偶数,则乙赢.请用列表法或画树状图的方法计算甲、乙获胜的概率,并说明这个游戏规则是否公平.
25.(12分)已知:如图,,点在射线上.
求作:正方形,使线段为正方形的一条边,且点在内部.(请用直尺、圆规作图,不写作法,但要保留作图痕迹)
26.(12分)小明准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段围成一个正方形.
(1)要使这两个正方形的面积之和等于,小明该怎么剪?
(2)小刚对小明说:“这两个正方形的面积之和不可能等于.”小刚的说法对吗?请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、A
4、A
5、B
6、C
7、D
8、D
9、C
10、B
11、B
12、A
二、填空题(每题4分,共24分)
13、-6
14、250π
15、
16、9:4
17、-6
18、1:1.
三、解答题(共78分)
19、(1);(2).
20、 (1) 11 , 10 , 78 , 81 ;(2)90人;(3) 八年级的总体水平较好
21、(1)见解析;(1)①见解析;②见解析
22、(1)图见解析;(2)图见解析;路径长π.
23、(1)①或;②长为或;(2);(3)的面积会发生变化;存在,最大值为:,最小值为:
24、(1);(2)游戏规则公平,理由详见解析
25、见详解
26、(1)剪成40cm和80cm的两段;(2)小刚的说法正确,理由见解析.
甲
乙
丙
丁
24
24
23
20
2.1
1.9
2
1.9
七年级
0
1
0
a
7
1
八年级
1
0
0
7
b
2
平均数
众数
中位数
七年级
78
75
八年级
78
80.5
相关试卷
这是一份广东省金平区六校联考2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了不等式组的解集在数轴上表示为,如图,中,,若,,则边的长是等内容,欢迎下载使用。
这是一份2023-2024学年广东省珠海市香洲区数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了若,则的值为等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市东环中学数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。