2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区数学九年级第一学期期末联考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是( )
A.B.C.D.
2.如图所示的网格是正方形网格,则sinA的值为( )
A.B.C.D.
3.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
A.B.C.且D.且
4.方程的根是( )
A.B.
C.D.
5.如图,在⊙O中,弦AB=6,半径OC⊥AB于P,且P为OC的中点,则AC的长是( )
A.2 B.3C.4D.2
6.已知是单位向量,且,那么下列说法错误的是( )
A. ∥B.||=2C.||=﹣2||D. =﹣
7.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是( )
A.S的值增大B.S的值减小
C.S的值先增大,后减小D.S的值不变
8.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为( )
A.8B.10C.D.
9.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是( )
A.3和2 B.4和2 C.2和2 D.2和4
10.若点在抛物线上,则的值( )
A.2021B.2020C.2019D.2018
11.若反比例函数y=的图象位于第二、四象限,则k的取值可以是( )
A.0B.1C.2D.以上都不是
12.已知二次函数的图象经过点,当自变量的值为时,函数的值为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在△ABC中,∠ACB=90°,点D、E分别在边AC、BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=2BC,则的值为____.
14.如图,将绕着点顺时针旋转后得到,若,,则的度数是__________.
15.如图,在平面直角坐标系中,点的坐标分别是,,若二次函数的图象过两点,且该函数图象的顶点为,其中,是整数,且,,则的值为__________.
16.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=_____.
17.如图,起重机臂长,露在水面上的钢缆长,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂逆时针转动到的位置,此时露在水面上的钢缆的长度是___________.
18.若将方程x2+6x=7化为(x+m)2=16,则m=______.
三、解答题(共78分)
19.(8分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.
(1)在平面直角坐标系中,若点.
①在的点中,是线段的“限距点”的是 ;
②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.
(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围
20.(8分)实验探究:
如图,和是有公共顶点的等腰直角三角形,,交于、点.
(问题发现)
(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;
(类比探究)
(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;
(拓展延伸)
(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.
21.(8分)对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=1时,代数式等于1;当x=1时,代数式等于1,我们就称1和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=1.
(1)代数式x2﹣2的不变值是 ,A= .
(2)说明代数式3x2+1没有不变值;
(3)已知代数式x2﹣bx+1,若A=1,求b的值.
22.(10分)为了“城市更美好、人民更幸福”,我市开展“三城联创”活动,环卫部门要求垃圾按三类分别装袋、投放,其中类指废电池,过期药品等有毒垃圾,类指剩余食品等厨余垃圾,类指塑料、废纸等可回收垃圾,甲、乙两人各投放一袋垃圾.
(1)甲投放的垃圾恰好是类的概率是 ;
(2)用树状图或表格求甲、乙两人投放的垃圾是不同类别的概率.
23.(10分)已知:关于x的方程,
(1)求证:无论k取任何实数值,方程总有实数根;
(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.
24.(10分)如图,是的直径,点在上且,连接,过点作交的延长线于点.求证:是的切线;
25.(12分)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.
26.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.
(1)求直线AC解析式;
(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;
(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、D
4、A
5、A
6、C
7、D
8、D
9、A
10、B
11、A
12、B
二、填空题(每题4分,共24分)
13、
14、
15、,
16、
17、30m
18、3
三、解答题(共78分)
19、(1)①E;②;(2).
20、(1)相等;(2)或;(3)1.
21、(3)﹣3和2;2;(2)见解析;(2)﹣2或3
22、(1);(2).
23、(1)证明见解析;(2)△ABC的周长为1.
24、见解析
25、(1)详见解析;(2)详见解析;(3)N点的坐标为(0,﹣1);(4)D点坐标为(3,0).
26、 (1)y=﹣x+5;(2)点F(,);四边形AFDE的面积的最大值为;(3)点N(0,),点P的运动路径最短距离=2+.
广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年九年级数学第一学期期末质量检测试题含答案: 这是一份广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年九年级数学第一学期期末质量检测试题含答案,共8页。
广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学八上期末经典模拟试题含答案: 这是一份广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学八上期末经典模拟试题含答案,共6页。试卷主要包含了下列命题是真命题的是,下列二次根式中的最简二次根式是等内容,欢迎下载使用。
2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区八上数学期末监测模拟试题含答案: 这是一份2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区八上数学期末监测模拟试题含答案,共7页。试卷主要包含了如图,,则图中全等三角形共有,如图,在中,,,则的度数为,若分式的值为零,则x=,周长38的三角形纸片等内容,欢迎下载使用。