2023-2024学年广西桂林市六校数学九年级第一学期期末统考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为( )
A.8﹣4B.﹣4C.3﹣4D.6﹣3
2.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )
A.30°B.45°C.60°D.40°
3.如图所示,中,,,点为中点,将绕点旋转,为中点,则线段的最小值为( )
A.B.C.D.
4.据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为( )
A.B.C.D.
5.点P(﹣1,2)关于原点对称的点Q的坐标为( )
A.(1,2)B.(﹣1,﹣2)C.(1.﹣2)D.(﹣1,﹣2)
6.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是( )
A.y=﹣x2+6x(3<x<6)B.y=﹣x2+12x(0<x<12)
C.y=﹣x2+12x(6<x<12)D.y=﹣x2+6x(0<x<6)
7.下列算式正确的是( )
A.B.C.D.
8.若点在反比例函数的图象上,则关于的二次方程的根的情况是( ).
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定
9.如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,F在BC上,当四边形EFGH是矩形,且EF=2EH时,则矩形EFGH的周长为( )
A.B.C.D.
10.某种品牌运动服经过两次降价,每件零售价由520元降为312元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )
A.B.
C.D.
11.在函数中,自变量x的取值范围是( )
A.x>0B.x≥﹣4C.x≥﹣4且x≠0D.x>0且x≠﹣1
12.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=( )
A.15B.6C.9D.8
二、填空题(每题4分,共24分)
13.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径为______寸.
14.若,则=_____.
15.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.
16.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.
17.一个多边形的每个外角都是36°,这个多边形是______边形.
18.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是______ .
三、解答题(共78分)
19.(8分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从B出发,沿BC方向,以1cm/s的速度向点C运动,点Q从A出发,沿AB方向,以2cm/s的速度向点B运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s)(t>0),△BPQ的面积为S(cm2).
(1)t=2秒时,则点P到AB的距离是 cm,S= cm2;
(2)t为何值时,PQ⊥AB;
(3)t为何值时,△BPQ是以BP为底边的等腰三角形;
(4)求S与t之间的函数关系式,并求S的最大值.
20.(8分)甲、乙两人进行摸牌游戏现有三张形状大小完全相同的牌,正面分别标有数字2,3,1.将三张牌背面朝上,洗匀后放在桌子上,甲从中随机抽取一张牌,记录数字后放回洗匀,乙再从中随机抽取一张.
(1)甲从中随机抽取一张牌,抽取的数字为奇数的概率为 ;
(2)请用列表法或画树状图的方法,求两人抽取的数字相同的概率.
21.(8分)如图,在每个小正方形的边长均为1的方格纸中,线段的端点、均在小正方形的顶点上.
(1)在方格纸中画出以为一条直角边的等腰直角,顶点在小正方形的顶点上.
(2)在方格纸中画出的中线,将线段绕点顺时针旋转得到线段,画出旋转后的线段,连接,直接写出四边形的面积.
22.(10分)如图,⊙中,弦与相交于点,,连接.
求证:⑴;
⑵.
23.(10分)如图,在正方形ABCD中, ,点E为对角线AC上一动点(点E不与点A、C重合),连接DE,过点E作,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)求AC的长;
(2)求证矩形DEFG是正方形;
(3)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
24.(10分)在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),
(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;
(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.
25.(12分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.
(1)求与之间的函数解析式,并写出自变量的取值范围;
(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
26.(12分)如图,正方形ABCD,△ABE是等边三角形,M是正方形ABCD对角线AC(不含点A)上任意一点,将线段AM绕点A逆时针旋转60°得到AN,连接EN、DM.求证:EN=DM.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、B
4、B
5、C
6、D
7、B
8、A
9、C
10、A
11、C
12、D
二、填空题(每题4分,共24分)
13、1.
14、
15、
16、
17、十
18、
三、解答题(共78分)
19、(1),;(2);(3);(4)S=﹣t2+3t,S的最大值为.
20、(1);(2).
21、(1)见解析;(2)图形见解析,10
22、(1)见解析;(2)见解析.
23、(1)2;(2)见解析;(3)是,定值为8
24、(1)E(3,3),F(3,0);(2)见解析.
25、(1)();(2),每件销售单价为100元时,每天的销售利润最大,最大利润为2000元;(3)该产品的成本单价应不超过65元.
26、证明见解析
广西桂林市宝贤中学2023-2024学年九年级数学第一学期期末经典模拟试题含答案: 这是一份广西桂林市宝贤中学2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共7页。
2023-2024学年广西桂林市八上数学期末检测模拟试题含答案: 这是一份2023-2024学年广西桂林市八上数学期末检测模拟试题含答案,共6页。试卷主要包含了下列各式中正确的是,代数式有意义的条件是,计算的结果是,满足的整数是,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年广西省桂林市数学八年级第一学期期末统考试题含答案: 这是一份2023-2024学年广西省桂林市数学八年级第一学期期末统考试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,将点A,49的平方根为,若分式方程有增根, 则的值是等内容,欢迎下载使用。