![2023-2024学年新疆乌鲁木齐市数学九上期末学业质量监测试题含答案01](http://www.enxinlong.com/img-preview/2/3/15283917/0-1706153100983/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023-2024学年新疆乌鲁木齐市数学九上期末学业质量监测试题含答案02](http://www.enxinlong.com/img-preview/2/3/15283917/0-1706153101015/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023-2024学年新疆乌鲁木齐市数学九上期末学业质量监测试题含答案03](http://www.enxinlong.com/img-preview/2/3/15283917/0-1706153101032/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023-2024学年新疆乌鲁木齐市数学九上期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.的值等于( )
A.B.C.D.1
2.若|m|=5,|n|=7,m+n<0,则m﹣n的值是( )
A.﹣12或﹣2B.﹣2或12C.12或2D.2或﹣12
3.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27°B.34°C.36°D.54°
4.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于( )
A.15°B.30°C.45°D.60°
5.下列实数中,介于与之间的是( )
A.B.C.D.
6.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:
当y<6时,x的取值范围是( )
A.x<1B.x≤3C.x<1或x>0D.x<1或x>3
7.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是
A.B.C.D.
8.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为( )
A.8,1B.1,9C.8,9D.9,1
9.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60°B.45°C.15°D.90°
10.在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国”四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为( )
A.B.C.D.
11.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为( )
A.5米B.6米C.8米D.(3+ )米
12.已知一元二次方程的较小根为x1,则下面对x1的估计正确的是
A.B.C.D.
二、填空题(每题4分,共24分)
13.如果,那么_____.
14.x台拖拉机,每天工作x小时,x天耕地x亩,则y台拖拉机,每天工作y小时,y天耕____亩.
15.已知点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,则a+b的值为_____.
16.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.
17.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
18.小明和小红在太阳光下行走,小明身高1.5m,他的影长2.0m,小红比小明矮30cm,此刻小红的影长为______m.
三、解答题(共78分)
19.(8分)如图,在坐标系中,抛物线经过点和,与轴交于点.直线.
抛物线的解析式为 .直线的解析式为 ;
若直线与抛物线只有一个公共点,求直线的解析式;
设抛物线的顶点关于轴的对称点为,点是抛物线对称轴上一动点,如果直线与抛物线在轴上方的部分形成了封闭图形(记为图形).请结合函数的图象,直接写出点的纵坐标的取值范围.
20.(8分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.
(1)①的长为______;
②的长用含的代数式表示为______;
(2)当为矩形时,求的值;
(3)当与重叠部分图形为四边形时,求与之间的函数关系式.
21.(8分)如图所示,一辆单车放在水平的地面上,车把头下方处与坐垫下方处在平行于地面的同一水平线上,,之间的距离约为,现测得,与的夹角分别为与,若点到地面的距离为,坐垫中轴处与点的距离为,求点到地面的距离(结果保留一位小数).(参考数据:,,)
22.(10分)如图1,直线y=x与双曲线y=交于A,B两点,根据中心对称性可以得知OA=OB.
(1)如图2,直线y=2x+1与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试证明:AC=BD;
(2)如图3,直线y=ax+b与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试问:AC=BD还成立吗?
(3)如果直线y=x+3与双曲线y=交于A,B两点,与坐标轴交点C,D两点,若DB+DC≤5,求出k的取值范围.
23.(10分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).
24.(10分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1).从A、D、E、F四点中任意取一点,以所取的这一点及B、C为顶点三角形,则所画三角形是等腰三角形的概率是 ;
(2).从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表求解).
25.(12分)如图,在平面直角坐标系中,反比例函数的图象过等边三角形的顶点,,点在反比例函数图象上,连接.
(1)求反比例函数的表达式;
(2)若四边形的面积是,求点的坐标.
26.(12分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.
(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、C
4、B
5、A
6、D
7、D
8、D
9、C
10、B
11、A
12、A
二、填空题(每题4分,共24分)
13、2
14、
15、1.
16、
17、
18、1.6
三、解答题(共78分)
19、(1);(2);(3).
20、(1)①3;②3t;(2);(3)当0<t≤时,S=-3t2+48t;当<t<3,S=t2−14t+1.
21、66.7cm
22、(1)见解析;(2)成立,见解析;(3)k≤2
23、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里
24、(1)(2)
25、(1)(2)
26、(1)AD=9;(2)AD=
x
…
﹣1
0
1
2
3
…
y
…
﹣2
3
6
7
6
…
新疆乌鲁木齐市沙依巴克区2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份新疆乌鲁木齐市沙依巴克区2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
新疆乌鲁木齐市第九十八中学2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份新疆乌鲁木齐市第九十八中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了已知抛物线与x轴相交于点A,B等内容,欢迎下载使用。
2023-2024学年柳州市数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年柳州市数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了下列说法正确的是,下列事件是必然事件的是等内容,欢迎下载使用。