2023-2024学年江苏省南京市六校联考数学九年级第一学期期末复习检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,在中,已知点在上,点在上,,,下列结论中正确的是( )
A.B.C. D.
2.如图,已知四边形是平行四边形,下列结论不正确的是( )
A.当时,它是矩形B.当时,它是菱形
C.当时,它是菱形D.当时,它是正方形
3.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为( )
A.B.C.D.
4.如图,点在的边上,以原点为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为( )
A.B.C.D.
5.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若OA=2,则四边形CODE的周长为( )
A.4B.6C.8D.10
6.若抛物线与坐标轴有一个交点,则的取值范围是( )
A.B.C.D.
7.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在A的下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为
A.3B.C.4D.
8.如图,某中学计划靠墙围建一个面积为的矩形花圃(墙长为),围栏总长度为,则与墙垂直的边为( )
A.或B.C.D.
9.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A.c<﹣3B.c<﹣2C.c<D.c<1
10.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是( )
A.4B.5C.6D.7
11.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是( )
A.△ABC是等腰三角形
B.△ABC是等腰直角三角形
C.△ABC是直角三角形
D.△ABC是等边三角形
12.用配方法解一元二次方程,变形后的结果正确的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球____________个.
14.圆心角是60°且半径为2的扇形面积是______
15.边心距为的正六边形的半径为_______.
16.函数是关于反比例函数,则它的图象不经过______的象限.
17.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为 .
18.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.
三、解答题(共78分)
19.(8分)如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)以点A为旋转中心,将△ABC绕点A逆时针旋转90°得到△AB1C1,画出△AB1C1.
(2)画出△ABC关于原点O成中心对称的△A2B2C2,若点C的坐标为(﹣4,﹣1),则点C2的坐标为 .
20.(8分)已知关于x的不等式组恰有两个整数解,求实数a的取值范围.
21.(8分)阅读对话,解答问题:
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.
22.(10分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.
(1)如图1,分别求的值;
(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;
(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.
23.(10分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
证明:∽;
若,求的值;
如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.
24.(10分)已知,在中,,,点为的中点.
(1)若点、分别是、的中点,则线段与的数量关系是 ;线段与的位置关系是 ;
(2)如图①,若点、分别是、上的点,且,上述结论是否依然成立,若成立,请证明;若不成立,请说明理由;
(3)如图②,若点、分别为、延长线上的点,且,直接写出的面积.
25.(12分)定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点. 例如,在函数中,当时,无论取何值,函数值,所以这个函数的图象过定点.
求解体验
(1)①关于的一次函数的图象过定点_________.
②关于的二次函数的图象过定点_________和_________.
知识应用
(2)若过原点的两条直线、分别与二次函数交于点和点且,试求直线所过的定点.
拓展应用
(3)若直线与拋物线交于、两点,试在拋物线上找一定点,使,求点的坐标.
26.(12分)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠形风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:
(1)用表达式表示蝙蝠形风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);
(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?
(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、C
4、A
5、C
6、A
7、B
8、C
9、B
10、C
11、B
12、B
二、填空题(每题4分,共24分)
13、
14、
15、8
16、第一、三象限
17、1.
18、2:1.
三、解答题(共78分)
19、 (1)见解析,(2)图见解析;(4,1)
20、-4≤a<-3.
21、(1)详见解析;(2).
22、(1),;(2);(3).
23、(1)证明见解析;(2);(3).
24、(1),;(2)成立,证明见解析;(3)1.
25、(1)①;②;(2)直线上的定点为;(3)点为
26、(1)y=-10x+300(12≤x≤30);(2) 王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元;(3) 当售价定为20元时,王大伯获得利润最大,最大利润是2元.
江苏省苏州区六校联考2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份江苏省苏州区六校联考2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列四种说法,设等边三角形的边长为x,在中,,,,则的值为等内容,欢迎下载使用。
江苏省姜堰区六校联考2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份江苏省姜堰区六校联考2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在菱形中,,且连接则等内容,欢迎下载使用。
2023-2024学年江苏省海门六校联考数学九年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年江苏省海门六校联考数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,点关于轴对称的点的坐标是等内容,欢迎下载使用。