湖北省天门市江汉学校2023-2024学年九年级数学第一学期期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )
A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃
2.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为( )
A.B.C.D.
3.如图,△ABC中,D为AC中点,AF∥DE,S△ABF:S梯形AFED=1:3,则S△ABF:S△CDE=( )
A.1:2B.2:3C.3:4D.1:1
4.下列事件是随机事件的是( )
A.打开电视,正在播放新闻B.氢气在氧气中燃烧生成水
C.离离原上草,一岁一枯荣D.钝角三角形的内角和大于180°
5.若,则的值是( )
A.B.C.D.0
6.正三角形外接圆面积是,其内切圆面积是( )
A.B.C.D.
7.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米B.4米C.5米D.6米
8.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=( )
A.54°B.72°C.108°D.144°
9.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( )
A.30°B.35°C.45°D.60°
10.如图,菱形中,,,且,连接交对角线于.则的度数是( )
A.100°B.105°C.120°D.135°
二、填空题(每小题3分,共24分)
11.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
12.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.
13.若将方程x2+6x=7化为(x+m)2=16,则m=______.
14.分解因式: .
15.如图,已知四边形ABCD是菱形,BC∥x轴,点B的坐标是(1,),坐标原点O是AB的中点.动圆⊙P的半径是,圆心在x轴上移动,若⊙P在运动过程中只与菱形ABCD的一边相切,则点P的横坐标m 的取值范围是_________.
16.在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=_____.
17.已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为____________.
18.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是,则袋中有白球_________个.
三、解答题(共66分)
19.(10分)有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.
20.(6分)已知抛物线 y x2 mx 2m 4(m>0).
(1)证明:该抛物线与 x 轴总有两个不同的交点;
(2)设该抛物线与 x 轴的两个交点分别为 A,B(点 A 在点 B 的右侧),与 y 轴交于点 C,A,B,三点都在圆 P 上.
①若已知 B(-3,0),抛物线上存在一点 M 使△ABM 的面积为 15,求点 M 的坐标;
②试判断:不论 m 取任何正数,圆 P 是否经过 y 轴上某个定点?若是,求出该定点的坐标,若不是,说明理由.
21.(6分)解方程:2x2+3x﹣1=1.
22.(8分)已知关于x的一元二次方程2x2+(2k+1)x+k=1.
(1)求证:方程总有两个实数根;
(2)若该方程有一个根是正数,求k的取值范围.
23.(8分)如图,△ABC中∠A=60°,∠B=40°,点D、E分别在△ABC的边AB、AC上,且∠ADE=80°.
(1)求证:△AED∽△ABC;
(2)若AD=4,AB=8,AE=5,求CE的长.
24.(8分)如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
25.(10分)解方程:
(1)用公式法解方程:3x2﹣x﹣4=1
(2)用配方法解方程:x2﹣4x﹣5=1.
26.(10分)如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.
(1)求证:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一边AB的值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、A
5、D
6、D
7、A
8、B
9、A
10、B
二、填空题(每小题3分,共24分)
11、.
12、
13、3
14、.
15、或或或
16、
17、8或1.
18、6
三、解答题(共66分)
19、(1);(2).
20、(1)见解析;(2)①M或或或;②是,圆 P经过 y 轴上的定点(0,1).
21、.
22、(1)见解析;(2)
23、(1)见解析;(2)CE=3
24、(1)y=-x2+x+2,x=1;(2)C(0,2);y=−x+2;(1)Q1(1,0),Q2(1,2+),Q1(1,2-).
25、(1)x1=,x2=-1;(2)x1=5,x2=-1.
26、(1)证明见解析;(2)AB=1.
2023-2024学年湖北省黄州思源实验学校数学九年级第一学期期末学业水平测试试题含答案: 这是一份2023-2024学年湖北省黄州思源实验学校数学九年级第一学期期末学业水平测试试题含答案,共7页。试卷主要包含了有一组数据,某车的刹车距离y等内容,欢迎下载使用。
2023-2024学年湖北省襄阳市枣阳数学九年级第一学期期末学业水平测试试题含答案: 这是一份2023-2024学年湖北省襄阳市枣阳数学九年级第一学期期末学业水平测试试题含答案,共8页。
2023-2024学年湖北省武汉市江汉区常青第一学校数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年湖北省武汉市江汉区常青第一学校数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。