2023-2024学年江苏省邗江实验学校数学九上期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为,则得方程( )
A.B.
C.D.
2.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣.其中正确结论有( )
A.1个B.1个C.3个D.4个
3.下列方程中,关于x的一元二次方程是( )
A.3(x+1)2=2(x+1)B.+-2=0
C.ax2+bx+c=0D.x2+2x=x2-1
4.抛物线关于轴对称的抛物线的解析式为( ).
A.B.
C.D.
5.如果可以通过配方写成的形式,那么可以配方成( )
A.B.C.D.
6.一元二次方程的解是( )
A.B.C.,D.,
7.下列说法正确的是( ).
A.“购买1张彩票就中奖”是不可能事件
B.“概率为0.0001的事件”是不可能事件
C.“任意画一个三角形,它的内角和等于180°”是必然事件
D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次
8.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为( )
A.B.C.D.
9.如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=( )
A.25°B.30°C.40°D.60°
10.在一个不透明的口袋中装有个完全相同的小球,把它们分别标号为,从中随机摸出一个小球,其标号小于的概率为( )
A.B.C.D.
11.小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是( )
A.小明认为只有当时,函数值为1;
B.小亮认为找不到实数,使函数值为0;
C.小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;
D.小梅发现函数值随的变化而变化,因此认为没有最小值
12.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为( )
A.40°B.35°C.30°D.45°
二、填空题(每题4分,共24分)
13.点是线段的黄金分割点,若,则较长线段的长是_____.
14.计算:=_____.
15.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .
16.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cs∠AOB的值等于___________.
17.在中,,如图①,点从的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图②所示,则的长为__________.
18.某校棋艺社开展围棋比赛,共位学生参赛.比赛为单循环制,所有参赛学生彼此恰好比赛一场.记分规则为:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,若所有参赛者的得分总和为76分,且平局的场数不超过比赛场数的,则__________.
三、解答题(共78分)
19.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB, CD.
(1)求作此残片所在的圆(不写作法,保留作图痕迹)
(2)求(1)中所作圆的半径
20.(8分)如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点.
(1)求该抛物线的解析式与顶点的坐标.
(2)试判断的形状,并说明理由.
(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.
21.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.
(1)降价前商场每月销售该商品的利润是多少元?
(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
22.(10分)数学概念
若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.
理解概念
(1)若点是的等角点,且,则的度数是 .
(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)
①如图①,
②如图②,
深入思考
(3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)
(4)下列关于“等角点”、“强等角点”的说法:
①直角三角形的内心是它的等角点;
②等腰三角形的内心和外心都是它的等角点;
③正三角形的中心是它的强等角点;
④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;
⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)
23.(10分)现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.
如图1、图2所示,某喷灌设备由一根高度为0.64 m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3 m处达到最高,高度为1 m.
(1)求喷灌出的圆形区域的半径;
(2)在边长为16 m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)
24.(10分)如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.
(1)如果,,
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 ,线段的数量关系为 ;
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.
25.(12分)如图,∠AED =∠C,DE = 4,BC = 12,CD = 15,AD = 3,求AE、BE的长.
26.(12分)如图,一次函数y=kx+1(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC.
(1)求k和m的值;
(2)求点B的坐标;
(3)求△ABC的面积.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、A
4、B
5、B
6、C
7、C
8、B
9、B
10、C
11、D
12、C
二、填空题(每题4分,共24分)
13、
14、
15、
16、.
17、
18、1
三、解答题(共78分)
19、(1)图见解析;(2)1.
20、(1),;(2)是直角三角形,理由见解析;(3)存在,.
21、 (1) 4800元;(2) 降价60元.
22、(1)100、130或1;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤
23、(1)8m;(2)不可以,水管高度调整到0.7m,理由见解析.
24、(1)①垂直,相等;②见解析;(2)见解析.
25、AE=6,BE=3.
26、(1)k的值为1,m的值为2;(2)点B的坐标为(3,4);(3)△ABC的面积是.
江苏省镇江市江南学校2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份江苏省镇江市江南学校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在平面直角坐标系中,已知点A,下列说法不正确的是等内容,欢迎下载使用。
江苏省邗江区2023-2024学年九上数学期末复习检测模拟试题含答案: 这是一份江苏省邗江区2023-2024学年九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算错误的是,下列几何体的左视图为长方形的是,下列命题是真命题的个数是等内容,欢迎下载使用。
江苏省无锡江阴市南菁实验学校2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份江苏省无锡江阴市南菁实验学校2023-2024学年九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,在平行四边形中等内容,欢迎下载使用。