还剩5页未读,
继续阅读
2023-2024学年河北省石家庄市九年级数学第一学期期末监测试题含答案
展开这是一份2023-2024学年河北省石家庄市九年级数学第一学期期末监测试题含答案,共8页。试卷主要包含了下列各点在反比例函数图象上的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,在△ABC中,DE//BC,,S梯形BCED=8,则S△ABC是( )
A.13B.12C.10D.9
2.如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )
A.(3)(4)(1)(2)B.(4)(3)(1)(2)
C.(4)(3)(2)(1)D.(2)(4)(3)(1)
3.如图,A、D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=( )
A.80°B.70°C.60°D.50°
4.下列各点在反比例函数图象上的是( )
A.B.C.D.
5.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为 ( )
A.120°B.180°C.240°D.300°
6.用min{a,b}表示a,b两数中的最小数,若函数,则y的图象为( )
A.B.C.D.
7.将抛物线向右平移2个单位, 则所得抛物线的表达式为( )
A.B.
C.D.
8.如图,在△中,,,垂足为,若,,则的值为( )
A.B.
C.D.
9.如图,在矩形ABCD中,DE⊥AC垂足为F,交BC于点E,BE=2EC,连接AE.则tan∠CAE的值为( )
A.B.C.D.
10.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )
A.甲、乙两队身高一样整齐B.甲队身高更整齐
C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐
11.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,( )
A.30°B.70°C.30°或60°D.40°或70°
12.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则( )
A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3
二、填空题(每题4分,共24分)
13.为准备体育中考,甲、乙两名学生各进行了10次1分钟跳绳的测试,已知两名学生10次1分钟跳绳的平均成绩均为160个,甲的方差是80(个),乙的方差是100(个).则这10次1分钟跳绳测试成绩比较稳定的学生是________ (填“甲”或“乙”).
14.小王存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年 的年利率不变,到期后取出2750元,则年利率为__________.
15.将点P(-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为_____.
16.菱形有一个内角为60°,较短的对角线长为6,则它的面积为_____.
17.建国70周年大阅兵时,以“同心共筑中国梦”为主题的群众游行队伍某表演方阵有8行12列,后又增加了429人,使得增加的行数和列数相同.请你计算增加了多少行. 若设增加了x行,由题意可列方程为_______________________ .
18.若反比例函数的图像上有两点,, 则____.(填“>”或“=”或“<”)
三、解答题(共78分)
19.(8分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.
(1)求这条直线的函数关系式及点B的坐标.
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
20.(8分)阅读下面的材料:
小明同学遇到这样一个问题,如图1,AB=AE,∠ABC=∠EAD,AD=mAC,点P在线段BC上,∠ADE=∠ADP+∠ACB,求的值.
小明研究发现,作∠BAM=∠AED,交BC于点M,通过构造全等三角形,将线段BC转化为用含AD的式子表示出来,从而求得的值(如图2).
(1)小明构造的全等三角形是:_________≌________;
(2)请你将小明的研究过程补充完整,并求出的值.
(3)参考小明思考问题的方法,解决问题:
如图3,若将原题中“AB=AE”改为“AB=kAE”,“点P在线段BC上”改为“点P在线段BC的延长线上”,其它条件不变,若∠ACB=2α,求:的值(结果请用含α,k,m的式子表示).
21.(8分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)写出满足条件的k的最大整数值,并求此时方程的根.
22.(10分)如图,已知AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.
(1)求证:DC是⊙O的切线;
(2)若AE=1,ED=3,求⊙O的半径.
23.(10分)抛物线与轴交于两点(点在点的左侧),且,,与轴交于点,点的坐标为(0,-2),连接,以为边,点为对称中心作菱形.点是轴上的一个动点,设点的坐标为,过点作轴的垂线交抛物线与点,交于点.
(1)求抛物线的解析式;
(2)轴上是否存在一点,使三角形为等腰三角形,若存在,请直接写出点的坐标;若不存在,请说明理由;
(3)当点在线段上运动时,试探究为何值时,四边形是平行四边形?请说明理由.
24.(10分)如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP=5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求A、B两观景台之间的距离;
(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离.(结果保留根号)
25.(12分)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
26.(12分)如图,平面直角坐标系中,A、B、C坐标分别是(-4,0)、(-4,-1)、(-1,1).
(1)将△ABC绕点O逆时针方向旋转90°后得△A1B1C1,画出△A1B1C1;
(1)写出A1、B1、C1的坐标;
(3)画出△ABC关于点O的中心对称图形△A1B1C1.
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、D
4、B
5、B
6、C
7、D
8、D
9、C
10、B
11、C
12、D
二、填空题(每题4分,共24分)
13、甲
14、
15、 (-1,1)
16、18
17、
18、<
三、解答题(共78分)
19、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.
20、(1);(2);(3).
21、(1)(2) ,
22、(1)证明见解析;(2)1.
23、(1)y=x2-x-2;(2)P的坐标为(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)m=1时.
24、(1)A、B两观景台之间的距离为=(5+5)km;(2)观测站B到射线AP的最短距离为()km.
25、(1)y=﹣x2+4x;(2)P(2,2);(3)S△MOC最大值为.
26、(1)画图形见解析;(1),,;(3)画图形见解析
相关试卷
河北省石家庄市新华区2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案:
这是一份河北省石家庄市新华区2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
河北省石家庄市石门实验学校2023-2024学年九年级数学第一学期期末监测模拟试题含答案:
这是一份河北省石家庄市石门实验学校2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了如图,在中,如果,那么代数式的值是.等内容,欢迎下载使用。
2023-2024学年河北省石家庄市名校九年级数学第一学期期末质量跟踪监视试题含答案:
这是一份2023-2024学年河北省石家庄市名校九年级数学第一学期期末质量跟踪监视试题含答案,共7页。