2023-2024学年浙江省嘉兴市南湖区实验数学九年级第一学期期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,已知等边的边长为,以为直径的圆交于点,以为圆心,为半径作圆,是上一动点,是的中点,当最大时,的长为( )
A.B.C.D.
2.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为( )
A.cmB.8cmC.6cmD.4cm
3.下列四个图形中,既是轴对称图形又是中心对称图形的有( )
A.4个 B.3个 C.2个 D.1个
4.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
A.抛物线开口向下
B.抛物线与x轴的交点为(﹣1,0),(3,0)
C.当x=1时,y有最大值为0
D.抛物线的对称轴是直线x=
5.方程(x+1)2=4的解是( )
A.x1=﹣3,x2=3B.x1=﹣3,x2=1C.x1=﹣1,x2=1D.x1=1,x2=3
6.某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为( )
A.150B.100C.50D.200
7.如图,∠AOB=90°,∠B=30°,△A′O B′可以看作是由△AOB绕点O顺时针旋转角度得到的.若点A′在AB上,则旋转角的度数是( )
A.30°B.45°C.60°D.90°
8.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )
A.B.C.D.
9.方程x2-4=0的解是
A.x=2B.x=-2C.x=±2D.x=±4
10.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是( )
A.B.C.D.
11.如图,边长为的正六边形内接于,则扇形(图中阴影部分)的面积为( )
A.B.C.D.
12.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为( )
A.B.
C.D.
二、填空题(每题4分,共24分)
13.如图,是的直径,是的切线,交于点,,,则______.
14.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.
15.如图,△ABC中,AB=6,BC=1.如果动点D以每秒2个单位长度的速度,从点B出发沿边BA向点A运动,此时直线DE∥BC,交AC于点E.记x秒时DE的长度为y,写出y关于x的函数解析式_____(不用写自变量取值范围).
16.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为_____.
17.已知一列分式,,,,,,…,观察其规律,则第n个分式是_______.
18.在Rt△ABC中,∠C=90°,若sinA=,则csB=_____.
三、解答题(共78分)
19.(8分)如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.
(1)求证:△ABE∽△ACB;
(2)如果AB=6,AE=4,求AC,CD的长.
20.(8分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.
(1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空:
①当∠D的度数为 时,四边形ECFG为菱形;
②当∠D的度数为 时,四边形ECOG为正方形.
21.(8分)在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣2ax+4(a≠0).
(1)当a=1时,
①抛物线G的对称轴为x= ;
②若在抛物线G上有两点(2,y1),(m,y2),且y2>y1,则m的取值范围是 ;
(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围.
22.(10分)已知关于的方程
①求证:方程有两个不相等的实数根.
②若方程的一个根是求另一个根及的值.
23.(10分)已知:如图,在中,D是AC上一点,联结BD,且∠ABD =∠ACB.
(1)求证:△ABD∽△ACB;
(2)若AD=5,AB= 7,求AC的长.
24.(10分)如图,直线和反比例函数的图象交于两点,已知点的坐标为.
(1)求该反比例函数的解析式;
(2)求出点关于原点的对称点的坐标;
(3)连接,求的面积.
25.(12分)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为多少?
26.(12分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、D
5、B
6、A
7、C
8、B
9、C
10、B
11、B
12、B
二、填空题(每题4分,共24分)
13、
14、
15、y=﹣3x+1
16、AC⊥BD.
17、
18、 .
三、解答题(共78分)
19、(1)详见解析;(2)AC=9,CD=.
20、(1)证明见解析;(2)①30°;②22.5°.
21、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.
22、①详见解析;②,k=1
23、 (1)见详解;(2)
24、(1);(2)的坐标为;(3)的面积为.
25、5
26、此时快艇与岛屿C的距离是20nmile.
浙江省杭州市西湖区2023-2024学年数学九年级第一学期期末考试模拟试题含答案: 这是一份浙江省杭州市西湖区2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共6页。试卷主要包含了答题时请按要求用笔,下列图形中,是中心对称图形的是,下列事件为必然事件的是等内容,欢迎下载使用。
浙江省嘉兴市南湖区北师大南湖附校2023-2024学年数学九年级第一学期期末达标测试试题含答案: 这是一份浙江省嘉兴市南湖区北师大南湖附校2023-2024学年数学九年级第一学期期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=﹣,关于的一元二次方程根的情况是,下列事件中,是必然事件的是等内容,欢迎下载使用。
浙江省嘉兴市桐乡2023-2024学年数学九年级第一学期期末考试模拟试题含答案: 这是一份浙江省嘉兴市桐乡2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。