2023-2024学年海南省海口市美兰区九年级数学第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( )
A.B.C.D.
2.已知二次函数的图象如图所示,有下列结论:①;②; ③;④⑤;其中正确结论的个数是( )
A.B.C.D.
3.已知x=1是方程x2+m=0的一个根,则m的值是( )
A.﹣1B.1C.﹣2D.2
4.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A.B.C.D.
5.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( )
A.B.C.D.
6.抛物线y=(x-3)2+4的顶点坐标是( )
A.(-1,2) B.(-1,-2) C.(1,-2) D.(3,4)
7.如图,在中,,则的长度为
A.1B.C.D.
8.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为( )
A.=B.=
C.=D.=
9.如图,点C、D在圆O上,AB是直径,∠BOC=110°,AD∥OC,则∠AOD=( )
A.70°B.60°C.50°D.40°
10.抛物线y=x2-2x+m与x轴有两个交点,则m的取值范围为( )
A.m>1B.m≥1C.m<1D.m≤1
11.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )
A.B.C.D.
12.如图所示,在中,,,,则长为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.方程x2﹣9x=0的根是_____.
14.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=_____.
15.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.
16.抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=_____.
17.如图,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成一个圆锥,则圆锥的高为____.
18.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2km,从A测得灯塔P在北偏东60°的方向,从B测得灯塔P在北偏东45°的方向,则灯塔P到海岸线l的距离为_____km.
三、解答题(共78分)
19.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.
20.(8分)如图1,在中,,,,点是边上一个动点(不与、重合),点为射线上一点,且,以点为圆心,为半径作,设.
(1)如图2,当点与点重合时,求的值;
(2)当点在线段上,如果与的另一个交点在线段上时,设,试求与之间的函数解析式,并写出的取值范围;
(3)在点的运动过程中,如果与线段只有一个公共点,请直接写出的取值范围.
21.(8分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.
(1)求的度数;
(2)求证:
22.(10分)如图,直线y=1x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=1.
(1)求H点的坐标及k的值;
(1)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;
(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.
23.(10分)如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).
(1)求该抛物线的解析式;
(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;
(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.
24.(10分)如图,若是由ABC平移后得到的,且中任意一点经过平移后的对应点为
(1)求点小的坐标.
(2)求的面积.
25.(12分)对于平面直角坐标系中,已知点A(-2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.
图1 备用图
(1) ①如图1,在点P1(3,6),P2(-2,-5),P3(2,2)中,线段AB的可视点是 ;
②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:__________.
(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;
(3)在直线y=-x+m上存在线段AB的正可视点,直接写出m的取值范围.
26.(12分)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:
(尝试)
(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为 ;
(2)判断点A是否在抛物线L上;
(3)求n的值;
(发现)
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
(应用)
二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、A
4、B
5、C
6、D
7、C
8、A
9、D
10、C
11、B
12、B
二、填空题(每题4分,共24分)
13、x1=0,x2=1
14、4
15、6
16、﹣1
17、
18、
三、解答题(共78分)
19、见解析,.
20、(1);(2);(3)当或或时,与线段只有一个公共点.
21、(1)30° (2)证明见解析
22、(1)k=4;(1)点P的坐标为(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.
23、(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)
24、(1)(-1,5),(-2,3),(-4,4);(2)三角形面积为2.5;
25、(1)①线段AB的可视点是,; ②点P的坐标:P(0,3)(答案不唯一,纵坐标范围:≤≤6);(2)b的取值范围是:-8≤b≤1; (3)m的取值范围:或
26、 [尝试](1)(1,﹣2);(2)点A在抛物线L上;(3)n=1;[发现](2,0),(﹣1,1);[应用]不是,理由见解析.
2023-2024学年海南省海口市琼山区长流实验学校九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份2023-2024学年海南省海口市琼山区长流实验学校九年级数学第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,计算,正确的结果是,的相反数是,4的平方根是等内容,欢迎下载使用。
2023-2024学年海南省海口市第一中学九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年海南省海口市第一中学九年级数学第一学期期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
海南省海口市美兰区2023-2024学年数学八年级第一学期期末调研试题含答案: 这是一份海南省海口市美兰区2023-2024学年数学八年级第一学期期末调研试题含答案,共8页。试卷主要包含了下列命题是假命题的是,下列四种说法等内容,欢迎下载使用。