2023-2024学年浙江省金华市兰溪二中学数学九年级第一学期期末经典模拟试题含答案
展开这是一份2023-2024学年浙江省金华市兰溪二中学数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,不等式组的解集在数轴上表示为,二次函数y=-2等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )
A.B.3C.D.2
2.菱形的两条对角线长分别为60cm和80cm,那么边长是( )
A.60cmB.50cmC.40cmD.80cm
3.在中,,,若,则的长为( )
A.B.C.D.
4.若点在反比例函数的图象上,则的大小关系是( )
A.B.C.D.
5.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等( )
A.70°B.65°C.55°D.35°
6.不等式组的解集在数轴上表示为( )
A.B.C.D.
7.某班抽取6名同学参加体能测试,成绩如下:1,95,1,80,80,1.下列表述错误的是( )
A.众数是1B.平均数是1C.中位数是80D.极差是15
8.二次函数y=-2(x+1)2+3的图象的顶点坐标是( )
A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)
9.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为( )
A.B.C.D.
10.已知2x=3y(y≠0),则下面结论成立的是( )
A.B.
C.D.
11.如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为( )
A.10平方米B.10π平方米C.100平方米D.100π平方米
12.把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是( )
A.y=-3B.y=+3C.y=D.y=
二、填空题(每题4分,共24分)
13.关于x的方程的解是,(a,m,b均为常数,),则关于x的方程的解是________.
14.在△ABC中,若∠A,∠B满足|csA-|+(sinB-)2=0,则∠C=_________.
15.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)
16.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.
17.小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是_________.
18.如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_.
三、解答题(共78分)
19.(8分)如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
20.(8分)如图,双曲线与直线相交于点(点在第一象限),其横坐标为2.
(1)求的值;
(2)若两个图像在第三象限的交点为,则点的坐标为 ;
(3)点为此反比例函数图像上一点,其纵坐标为3,过点作,交轴于点,直接写出线段的长.
21.(8分)阅读以下材料,并按要求完成相应的任务.
已知平面上两点,则所有符合且的点会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.
阿氏圆基本解法:构造三角形相似.
(问题)如图1,在平面直角坐标中,在轴,轴上分别有点,点是平面内一动点,且,设,求的最小值.
阿氏圆的关键解题步骤:
第一步:如图1,在上取点,使得;
第二步:证明;第三步:连接,此时即为所求的最小值.
下面是该题的解答过程(部分):
解:在上取点,使得,
又.
任务:
将以上解答过程补充完整.
如图2,在中,为内一动点,满足,利用中的结论,请直接写出的最小值.
22.(10分)如图,在圆中,弦,点在圆上(与,不重合),联结、,过点分别作,,垂足分别是点、.
(1)求线段的长;
(2)点到的距离为3,求圆的半径.
23.(10分)已知二次函数(m 为常数).
(1)证明:不论 m 为何值,该函数的图像与 x 轴总有两个公共点;
(2)当 m 的值改变时,该函数的图像与 x 轴两个公共点之间的距离是否改变?若不变, 请求出距离;若改变,请说明理由.
24.(10分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天盈利1600元,可能吗?请说明理由.
25.(12分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0
(1)求出方程的根;
(2)m为何整数时,此方程的两个根都为正整数?
26.(12分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.
(参考数据:,,,,,)
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、A
4、B
5、A
6、B
7、C
8、B
9、C
10、A
11、D
12、B
二、填空题(每题4分,共24分)
13、x1=-12,x2=1
14、75°
15、
16、直线x=2
17、(3.76,0)
18、.
三、解答题(共78分)
19、.
20、(1)k=12;(2);(3)3
21、(1)(2).
22、(1);(2)圆的半径为1.
23、(1)详见解析;(2)图像与轴两个公共点之间的距离为
24、(1)每件衬衫应降价1元.(2)不可能,理由见解析
25、(1)∴.
(2)m=2或3 .
26、还需要航行的距离的长为20.4海里.
相关试卷
这是一份浙江省金华市兰溪市实验中学2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共7页。
这是一份浙江省金华市兰溪市2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,的值等于等内容,欢迎下载使用。
这是一份2023-2024学年浙江省金华兰溪市实验中学数学九上期末监测模拟试题含答案,共7页。试卷主要包含了边长为2的正六边形的面积为等内容,欢迎下载使用。