2023-2024学年浙江省杭州市西湖区新东方学校数学九年级第一学期期末监测试题含答案
展开这是一份2023-2024学年浙江省杭州市西湖区新东方学校数学九年级第一学期期末监测试题含答案,共7页。试卷主要包含了有一组数据,二次函数y=ax1+bx+c,已知,则下列各式不成立的是,若3x=2y等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.抛物线y=-2(x+3)2-4的顶点坐标是:
A.(3,-4)B.(-3,4)C.(-3,-4)D.(-4,3)
2.已知关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
A.B.C.D.
3.用小立方块搭成的几何体,从正面看和从上面看的形状图如下,则组成这样的几何体需要的立方块个数为( )
A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块
C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块
4.小明沿着坡度为的山坡向上走了,则他升高了( )
A.B.C.D.
5.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )
A.6B.7C.8D.9
6.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个B.3个C.4个D.5个
7.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )
A.B.C.D.
8.已知,则下列各式不成立的是( )
A.B.C.D.
9.若3x=2y(xy≠0),则下列比例式成立的是( )
A.B.C.D.
10.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC的度数等于( )
A.50°B.49°C.48°D.47°
11.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为( )
①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4
A.1个B.2个C.3个D.4个
12.如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:①②③④关于的方程有一个根为其中正确的结论个数有( )
A.1个B.2个C.3个D.4个
二、填空题(每题4分,共24分)
13.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是__________.
14.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.
15.函数y=的自变量x的取值范围是_______________.
16.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
17.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号)__________.
18.如图,中,,是线段上的一个动点,以为直径画分别交于连接,则线段长度的最小值为__________.
三、解答题(共78分)
19.(8分)国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?
20.(8分)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OA<OB).且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点.
(1)求线段AB的长度:
(2)过动点P作PF⊥OA于F,PE⊥OB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:
(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由.
21.(8分)如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.
(1)求证:△MED∽△NFE;
(2)当EF=FC时,求k的值.
(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.
22.(10分)已知关于的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程有一个根为负数,求的取值范围.
23.(10分)根据2019年莆田市初中毕业升学体育考试内容要求,甲、乙、丙在某节体育课他们各自随机分别到篮球场A处进行篮球运球绕杆往返训练或到足球场B处进行足球运球绕杆训练,三名学生随机选择其中的一场地进行训练.
(1)用列表法或树形图表示出的所用可能出现的结果;
(2)求甲、乙、丙三名学生在同一场地进行训练的概率;
(3)求甲、乙、丙三名学生中至少有两人在B处场地进行训练的概率.
24.(10分)已知关于x的一元二次方程:2x2+6x﹣a=1.
(1)当a=5时,解方程;
(2)若2x2+6x﹣a=1的一个解是x=1,求a;
(3)若2x2+6x﹣a=1无实数解,试确定a的取值范围.
25.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m
(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;
(2)若菜园面积为384m2,求x的值;
(3)求菜园的最大面积.
26.(12分)定义:在平面直角坐标系中,对于任意两点,,若点满足,,那么称点是点,的融合点.
例如:,,当点满是,时,则点是点,的融合点,
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式.
②若直线交轴于点,当为直角三角形时,求点的坐标.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、C
4、A
5、B
6、B
7、B
8、D
9、A
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、1米
15、x≥3
16、.
17、
18、.
三、解答题(共78分)
19、30
20、(1)1;(2);(3)存在,所求点M的坐标为M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).
21、(1)见解析;(2);(3)矩形EFHD的面积最小值为,k=.
22、(1)见解析;(2)
23、(1)共有8种可能;(2);(3)
24、(1),;(2)a=8;(3)
25、(1)见详解;(2)x=18;(3) 416 m2.
26、(1)点是点,的融合点;(2)①,②符合题意的点为, .
相关试卷
这是一份浙江省杭州市西湖区2023-2024学年九年级上学期期末数学试题,共23页。
这是一份浙江省杭州市西湖区2023-2024学年九年级上学期期末数学试题(),共6页。试卷主要包含了四边形内接于,则满足条件等内容,欢迎下载使用。
这是一份浙江省杭州市西湖区2023-2024学年数学九年级第一学期期末考试模拟试题含答案,共6页。试卷主要包含了答题时请按要求用笔,下列图形中,是中心对称图形的是,下列事件为必然事件的是等内容,欢迎下载使用。