2023-2024学年浙江省金华市婺城区九上数学期末检测试题含答案
展开这是一份2023-2024学年浙江省金华市婺城区九上数学期末检测试题含答案,共8页。试卷主要包含了一个物体如图所示,它的俯视图是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.将化成的形式为( )
A.B.
C.D.
2.一元二次方程 x2 +x=0的根是 ( )
A.x1=0,x2=1B.x1=0,x2=﹣1C.x1=x2=0D.x1=x2=1
3.若△ABC∽△ADE,若AB=9,AC=6,AD=3,则EC的长是( )
A.2B.3C.4D.5
4.设,,是抛物线上的三点,则,,的大小关系为( )
A.B.C.D.
5.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是( )
A.(,),(,)B.(,),(,)
C.(,),(,)D.(,),(,)
6.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是( )
A.2:1B.3:1C.2:3D.3:2
7.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
A.m<1B.m>﹣1C.m>1D.m<﹣1
8.一个物体如图所示,它的俯视图是( )
A.B.C.D.
9.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).
A.只有一个交点B.有两个交点,且它们分别在轴两侧
C.有两个交点,且它们均在轴同侧D.无交点
10.如图,AB 是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为( )
A.9 cmB.10 cmC.11 cmD.12 cm
11.函数y=ax2﹣1与y=ax(a≠0)在同一直角坐标系中的图象可能是( )
A.B.C.D.
12.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为( )
A.40°B.50°C.80°D.100°
二、填空题(每题4分,共24分)
13.如图,在四边形中,,,,分别为,的中点,连接,,.,平分,,的长为__.
14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.
15.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.
16.某扇形的弧长为πcm,面积为3πcm2,则该扇形的半径为_____cm
17.在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.随机摸出一只球记下颜色后放回,不断重复上述实验,统计数据如下:
共有白球___________只.
18.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.
三、解答题(共78分)
19.(8分)如图,是⊙的直径,,是的中点,连接并延长到点,使.连接交⊙于点,连接.
(1)求证:直线是⊙的切线;
(2)若,求⊙的半径.
20.(8分)用适当的方法解下列方程:
(1)
(2)
21.(8分)已知,如图,在平面直角坐标系中,直线 与轴交于点A,与轴交于点B,抛物线经过A、B两点,与轴的另一个交点为C.
(1)直接写出点A和点B的坐标;
(2)求抛物线的函数解析式;
(3)D为直线AB下方抛物线上一动点;
①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;
②是否存在点D,使得∠DBA的度数恰好是∠BAC度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.
22.(10分)一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.
(1)用树状图列出所有可能出现的结果;
(2)求3次摸到的球颜色相同的概率.
23.(10分)如图,已知△ABC为和点A'.
(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;
(尺规作图,保留作图痕迹,不写作法)
(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.
24.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发以lcm/s的速度沿折线AC﹣CB运动,过点P作PQ⊥AB于点Q,当点P不与点A、B重合时,以线段PQ为边向右作正方形PQRS,设正方形PQRS与△ABC的重叠部分面积为S,点P的运动时间为t(s).
(1)用含t的代数式表示CP的长度;
(2)当点S落在BC边上时,求t的值;
(3)当正方形PQRS与△ABC的重叠部分不是五边形时,求S与t之间的函数关系式;
(4)连结CS,当直线CS分△ABC两部分的面积比为1:2时,直接写出t的值.
25.(12分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.
(1)求P点的坐标;
(2)若△POQ的面积为9,求k的值.
26.(12分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:
(1)求这两年我国公民出境旅游总人数的年平均增长率;
(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、C
4、A
5、C
6、A
7、C
8、D
9、B
10、B
11、B
12、B
二、填空题(每题4分,共24分)
13、.
14、
15、
16、1
17、30
18、
三、解答题(共78分)
19、(1)见解析;(2).
20、(1), ;(2) ,
21、(1)A(-4,0)、B(0,-2);(2);(3)①(-1,3)或(-3,-2);②(-2,-3).
22、(1)见解析;(2)
23、(1)作图见解析;(2)证明见解析.
24、(1)当0<t<4时,CP=4﹣t,当4≤t<8时,CP=t﹣4;(1);(3)S=;(4)或
25、(1)(3,2);(2)k=﹣1
26、(1)20%(2)8640万人次
…
…
…
…
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
相关试卷
这是一份浙江省金华市婺城区2023-2024学年九年级上学期期末检测数学试题+,共6页。
这是一份浙江省金华市婺城区2023-2024学年九年级上学期期末检测数学试题,共6页。
这是一份浙江省金华市婺城区2023-2024学年八上数学期末综合测试试题含答案,共7页。试卷主要包含了在式子,,,中,分式的个数是,的算术平方根是等内容,欢迎下载使用。