2023-2024学年湖北省武汉市武昌区省水二中学数学九年级第一学期期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.关于的一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.不能确定
2.函数y= (k<0),当x<0时,该函数图像在
A.第一象限B.第二象限C.第三象限D.第四象限
3.如果两个相似多边形的面积之比为,那么它们的周长之比是( )
A.B.C.D.
4.如图,将正方形图案绕中心O旋转180°后,得到的图案是( )
A.B.
C.D.
5.一元二次方程x(3x+2)=6(3x+2)的解是( )
A.x=6B.x=﹣C.x1=6,x2=﹣D.x1=﹣6,x2=
6.下列命题正确的是( )
A.矩形的对角线互相垂直平分
B.一组对角相等,一组对边平行的四边形一定是平行四边形
C.正八边形每个内角都是
D.三角形三边垂直平分线交点到三角形三边距离相等
7.下列说法正确的是( )
A.了解飞行员视力的达标率应使用抽样调查
B.一组数据3,6,6,7,8,9的中位数是6
C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000
D.一组数据1,2,3,4,5的方差是2
8.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
9.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,3)B.(4,3)C.(3,1)D.(4,1)
10.已知二次函数图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是( )
A.B.C.D.
11.已知一个正多边形的一个外角为锐角,且其余弦值为,那么它是正( )边形.
A.六B.八C.十D.十二
12.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2B.m<﹣2
C.m>2D.m<2
二、填空题(每题4分,共24分)
13.某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是______.
14.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .
15.如图,在中,,,把绕点顺时针旋转得到,若点恰好落在边上处,则______°.
16.将抛物线向右平移2个单位长度,则所得抛物线对应的函数表达式为______.
17.已知反比例函数的图像上有两点M,N,且,,那么与之间的大小关系是_____________.
18.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是_____.
三、解答题(共78分)
19.(8分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.
(1)求此抛物线的解析式以及点B的坐标.
(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPN为矩形.
②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
20.(8分)光明中学以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨举办首届《诗词大会》,九年级2班的马小梅晋级总决赛,比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.
第一环节:横扫千军、你说我猜、初级飞花令,(分别用)表示;
第二环节:出口成诗、飞花令、超级飞花令、诗词接龙(分别用表示).
(1)请用画树状图或列表的方法表示马小梅参加总决赛抽取题目的所有可能结果;
(2)求马小梅参加总决赛抽取题目都是飞花令题目(初级飞花令、飞花令、超级飞花令)的概率.
21.(8分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC.求证:∠ACO=∠BCD.
22.(10分)如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:DE平分∠BEP;
(3)若⊙O的半径为10,CF=2EF,求BE的长.
24.(10分)在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).
(1)求m的值及点A的坐标;
(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.
①当点E′落在该二次函数的图象上时,求AA′的长;
②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;
③当A′B+BE′取得最小值时,求点E′的坐标.
25.(12分)如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.
(1)求证:MC=MQ
(2)当BQ=1时,求DM的长;
(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.
26.(12分)有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、A
4、D
5、C
6、B
7、D
8、A
9、A
10、D
11、B
12、B
二、填空题(每题4分,共24分)
13、.
14、.
15、100
16、
17、
18、3
三、解答题(共78分)
19、(1),B点坐标为(3,0);(2)①;②.
20、(1)详见解析;(2)
21、证明见解析
22、(1)y=-x2+x+2,x=1;(2)C(0,2);y=−x+2;(1)Q1(1,0),Q2(1,2+),Q1(1,2-).
23、(1)见解析;(2)见解析;(3)BE=1.
24、(2)m="2,A(-2,0);" (2)①,②点E′的坐标是(2,2),③点E′的坐标是(,2).
25、(1)见解析;(2)2.1;(3)或2
26、(1);(2).
湖北省武汉市武昌区省水二中学2023-2024学年九上数学期末考试模拟试题含答案: 这是一份湖北省武汉市武昌区省水二中学2023-2024学年九上数学期末考试模拟试题含答案,共7页。试卷主要包含了下列几何体的三视图相同的是,抛物线y=等内容,欢迎下载使用。
2023-2024学年湖北省武汉市武昌区武汉市古田路中学数学九年级第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年湖北省武汉市武昌区武汉市古田路中学数学九年级第一学期期末复习检测模拟试题含答案,共7页。
2023-2024学年湖北省武汉市武昌区粮道街中学数学八年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年湖北省武汉市武昌区粮道街中学数学八年级第一学期期末质量检测模拟试题含答案,共6页。试卷主要包含了下列各式中正确的是,如图,中,,,等内容,欢迎下载使用。