2023-2024学年湖北省随州市曾都区九上数学期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为
A.B.C.D.
2.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为( )
A.2B.2πC.πD.π
3.一个扇形的半径为4,弧长为,其圆心角度数是( )
A.B.C.D.
4.若点关于原点对称点的坐标是,则的值为( )
A.B.C.D.
5.如图所示的图案是由下列哪个图形旋转得到的( )
A.B.C.D.
6.如图,△ABC的顶点都是正方形网格中的格点,则cs∠ABC等于( )
A.B.C.D.
7.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为( )
A.57°B.66°C.67°D.44°
8.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为( )
A.直线x=1B.直线x=﹣2C.直线x=﹣1D.直线x=﹣4
9.若x=5是方程的一个根,则m的值是( )
A.-5B.5C.10D.-10
10.下面的函数是反比例函数的是( )
A.B.C.D.
11.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
12.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个B.2个C.3个D.4个
二、填空题(每题4分,共24分)
13.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).
14.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.
15.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.
16.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.
17.小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为米,留在墙上的影高为米,通过计算他得出旗杆的高度是___________米.
18.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.
三、解答题(共78分)
19.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,可计算出甲的平均成绩是 环(直接写出结果);
(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;
(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:)
20.(8分)经过点A(4,1)的直线与反比例函数y=的图象交于点A、C,AB⊥y轴,垂足为B,连接BC.
(1)求反比例函数的表达式;
(2)若△ABC的面积为6,求直线AC的函数表达式;
(3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠PAC=90°,则点P的坐标是 .
21.(8分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).
(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;
(2)求除点(2,0)外△ABC所有自相似点的坐标;
(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.
22.(10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.
(1)写出点B的坐标;
(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.
23.(10分)如图,已知Rt△ABO,点B在轴上,∠ABO=90°,∠AOB=30°,OB=,反比例函数的图象经过OA的中点C,交AB于点D.
(1)求反比例函数的表达式;
(2)求△OCD的面积;
(3)点P是轴上的一个动点,请直接写出使△OCP为直角三角形的点P坐标.
24.(10分)交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).
25.(12分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.
(1)求证:OD∥BC;
(2)若AC=2BC,求证:DA与⊙O相切.
26.(12分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠. 各商场的优惠条件如下:
甲商场优惠条件:第一台按原价收费,其余的每台优惠;
乙商场优惠条件:每台优惠.
设公司购买台电脑,选择甲商场时, 所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.
什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、C
4、A
5、D
6、B
7、A
8、C
9、D
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、24π
14、
15、
16、
17、
18、3
三、解答题(共78分)
19、(1) 9 ;(2) 7 ;(3),,选甲,理由见解析.
20、(1)反比例函数的表达式为y=(2)直线AC的函数表达式为y=x﹣1;(3)(,8).
21、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析
22、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.
23、(1);(2)面积为;(3)P(2,0)或(4,0)
24、此车超速,理由见解析.
25、(1)证明见解析;(2)证明见解析.
26、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠; 当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
10
10
9
8
湖北省随州市随州市曾都区尚市镇中学心学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份湖北省随州市随州市曾都区尚市镇中学心学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了已知二次函数y=2,下列关系式中,是反比例函数的是,如图,△OAB∽△OCD,OA,的值等于等内容,欢迎下载使用。
2023-2024学年湖北省随州市曾都区八年级(上)学期期末数学试题(含解析): 这是一份2023-2024学年湖北省随州市曾都区八年级(上)学期期末数学试题(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省随州市曾都区唐县2023-2024学年九年级数学第一学期期末检测试题含答案: 这是一份湖北省随州市曾都区唐县2023-2024学年九年级数学第一学期期末检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知甲、乙两地相距100等内容,欢迎下载使用。