2023-2024学年湖南省长沙市湘一立信实验学校九上数学期末统考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为,则可列方程( )
A.B.
C.D.
2.如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是( )
A.
B.
C.,,三点在同一直线上
D.
3.若关于的方程有实数根,则的取值范围是( )
A.B.C.D.
4.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是( )
A.4B.5C.6D.
5.把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是( )
A.B.C.D.
6.下列图形中,可以看作是中心对称图形的为( )
A.B.C.D.
7.sin45°的值等于( )
A.B.C.D.1
8.已知△ABC,以AB为直径作⊙O,∠C=88°,则点C在( )
A.⊙O上B.⊙O外C.⊙O 内
9.若,则( )
A.B.C.D.
10.下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )
A.B.C.D.1
11.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b>解集为( )
A.x>2或﹣1<x<0B.﹣1<x<0
C.﹣1<x<0或0<x<2D.x>2
12.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )
A.3.5B.4.2C.5.8D.7
二、填空题(每题4分,共24分)
13.光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.
14.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;
15.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cs∠BDC=,则BC的长为_____.
16.在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一一球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为_____.
17.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF 绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.
18.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.
三、解答题(共78分)
19.(8分)如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.
求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?
(2)鸡场面积可能达到200平方米吗?
(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?
20.(8分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
(1)求(-2)☆3的值;
(2)若=8,求a的值.
21.(8分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.
小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请帮助小东完成下面的问题.
(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:
请求出表中小东漏填的数;
(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;
(3)结合画出的函数图象,当的面积为时,求出的长.
22.(10分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.
(1)求证:BE=CE;
(2)若BC=8,AD=10,求四边形BFCD的面积.
23.(10分)如图,△ABC中,DE∥BC,EF∥AB.
(1)求证:△ADE∽△EFC;
(2)若AD=4,DE=6,=2,求EF和FC的值.
24.(10分)如图,△ABC中,∠BAC=120,以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60后到△ECD的位置.若AB=6,AC=4,求∠BAD的度数和AD的长.
25.(12分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线解析式;
(2)当点P运动到什么位置时,△PAB的面积最大?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.
26.(12分)现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.
(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为 ;
(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、D
4、C
5、B
6、B
7、B
8、B
9、B
10、C
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、
15、4
16、1.
17、
18、y=1(x﹣3)1﹣1.
三、解答题(共78分)
19、(1)长为15米,宽为10米;(2)不可能达到200平方米;(3)
20、 (1)-32;(2) a=1.
21、(1);(2)详见解析;(3)2.0或者3.7
22、(1)见解析;(2)四边形BFCD的面积为1.
23、(1)证明见解析;(2)EF=2,FC=1.
24、AD=10, ∠BAD=60°.
25、(1)y=﹣x2﹣2x+3 (2)(﹣,) (3)存在,P(﹣2,3)或P(,)
26、(1);(2).
0
0.5
1
1.5
2
2.5
3
3.5
4
0
0.7
1.7
2.9
4.8
5.2
4.6
0
2023-2024学年湖南省长沙市湘一立信实验学校数学九上期末联考试题含答案: 这是一份2023-2024学年湖南省长沙市湘一立信实验学校数学九上期末联考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,空地上等内容,欢迎下载使用。
2023-2024学年湖南省长沙市九上数学期末统考试题含答案: 这是一份2023-2024学年湖南省长沙市九上数学期末统考试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年湖南长沙市岳麓区九上数学期末统考模拟试题含答案: 这是一份2023-2024学年湖南长沙市岳麓区九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知M等内容,欢迎下载使用。