2023-2024学年湖南长沙雅礼实验中学数学九上期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.的相反数是( )
A.B.C.D.
2.抛物线的顶点坐标是( )
A.B.C.D.
3.如图,AB是☉O的直径,点C,D在☉O上,且,OD绕着点O顺时针旋转,连结CD交直线AB于点E,当DE=OD时,的大小不可能为( )
A.B.C.D.
4.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cs∠ACD=,BC=4,则AC的长为( )
A.1B.C.3D.
5.某公司2017年的营业额是万元,2019年的营业额为万元,设该公司年营业额的平均增长率为,根据题意可列方程为( )
A.B.
C.D.
6.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为( )
A.9B.3C.D.
7.如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是( )
A.邻边相等的矩形是正方形
B.对角线相等的菱形是正方形
C.两个全等的直角三角形构成正方形
D.轴对称图形是正方形
8.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )
A.B.C.D.
9.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是( )
A.B.C.D.
10.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某新能源汽车4s店的汽车销量自2018年起逐月增加.据统计,该店第一季度的汽车销量就达244辆,其中1月份销售汽车64辆.若该店1月份到3月份新能源汽车销售量的月平均增长率为x,则下列方程正确的是( )
A.64(1+x)2=244
B.64(1+2x)=244
C.64+64(1+x)+64(1+x)2=244
D.64+64(1+x)+64(1+2x)=244
11.△ABC在正方形网格中的位置如图所示,则csB的值为( )
A.B.C.D.2
12.如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:①②③④关于的方程有一个根为其中正确的结论个数有( )
A.1个B.2个C.3个D.4个
二、填空题(每题4分,共24分)
13.如图,为外一点,切于点,若,,则的半径是______.
14.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.
15.已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c>0的解集是_____.
16.方程的根为 .
17.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是
18.点P(3,﹣4)关于原点对称的点的坐标是_____.
三、解答题(共78分)
19.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF,BE.
(1)求证:直线CF为⊙O的切线;
(2)若DE=6,求⊙O的半径长.
20.(8分)现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球.
(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;
(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.
21.(8分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.
(1)求证:直线CD是⊙O的切线;
(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.
22.(10分)如图,在中,是高.矩形的顶点、分别在边、上,在边上,,,.求矩形的面积.
23.(10分)如图1,过原点的抛物线与轴交于另一点,抛物线顶点的坐标为,其对称轴交轴于点.
(1)求抛物线的解析式;
(2)如图2,点为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使面积最大时点的坐标;
(3)在对称轴上是否存在点,使得点关于直线的对称点满足以点、、、为顶点的四边形为菱形.若存在,请求出点的坐标;若不存在,请说明理由.
24.(10分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)请直接写出满足kx+b>的x的取值范围;
(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
25.(12分)已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).
(1)分别求出这两个函数的解析式;
(2)当x取什么范围时,反比例函数值大于0;
(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;
(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
26.(12分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.
(1)求二次函数解析式;
(2)若小球的落点是A,求点A的坐标;
(3)求小球飞行过程中离坡面的最大高度.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、C
4、D
5、A
6、C
7、A
8、B
9、B
10、C
11、A
12、C
二、填空题(每题4分,共24分)
13、1
14、
15、﹣1<x<1
16、.
17、.
18、(﹣3,4).
三、解答题(共78分)
19、(1)详见解析;(2)3
20、 (1)P(摸出白球)=;(2)这个游戏规则对双方不公平.
21、(1)见解析;(2)MN=2.
22、
23、(1);(2);(3)点的坐标为或
24、(1)y=﹣,y=﹣x+1;(2)x<﹣3或0<x<6;(3)点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,)
25、(1)y=,y=2x﹣3;(2)x>1;(3)x<﹣1.5或1<x<2;(4)点P′在直线上.
26、(1)y=﹣x2+4x(2)(7,)(3)当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是
湖南省长沙市雅礼集团2023-2024学年九上数学期末调研模拟试题含答案: 这是一份湖南省长沙市雅礼集团2023-2024学年九上数学期末调研模拟试题含答案,共7页。试卷主要包含了抛物线y=﹣3,方程的根是等内容,欢迎下载使用。
2023-2024学年湖南省长沙市雅礼实验中学数学九年级第一学期期末质量检测试题含答案: 这是一份2023-2024学年湖南省长沙市雅礼实验中学数学九年级第一学期期末质量检测试题含答案,共7页。
2023-2024学年湖南省长沙雅礼集团数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年湖南省长沙雅礼集团数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列计算中,结果是的是等内容,欢迎下载使用。