2023-2024学年苏州市振华中学九上数学期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是( )
A.B.C.D.
2.一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是( )
A.掷一次这枚骰子,向上一面的点数小于5
B.掷一次这枚骰子,向上一面的点数等于5
C.掷一次这枚骰子,向上一面的点数等于6
D.掷一次这枚骰子,向上一面的点数大于6
3.在平面直角坐标系中,的直径为10,若圆心为坐标原点,则点与的位置关系是( )
A.点在上B.点在外C.点在内D.无法确定
4.如图,⊙O的半径为5,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()
A.B.C.D.
5.在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则的长为( )
A.B.C.D.
6.获2019年度诺贝尔化学奖的“锂电池”创造了一个更清洁的世界.我国新能源发展迅猛,某种特型锂电池2016年销售量为8万个,到2018年销售量为97万个.设年均增长率为x,可列方程为( )
A.8(1+x)2=97B.97(1﹣x)2=8C.8(1+2x)=97D.8(1+x2)=97
7.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=1.则△PEF的周长为( )
A.1B.15C.20D.25
8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )
A.平均数B.方差C.中位数D.极差
9.二次函数的图象如图,若一元二次方程有实数解,则k的最小值为
A.B.C.D.0
10.下列事件属于随机事件的是( )
A.抛出的篮球会下落
B.两枚骰子向上一面的点数之和大于1
C.买彩票中奖
D.口袋中只装有10个白球,从中摸出一个黑球
11.方程(m﹣2)x2+mx﹣1=0是关于x的一元二次方程,则m的值为( )
A.任何实数.B.m≠0C.m≠2D.m≠﹣2
12.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是( )
A.40°B.80°C.100°D.120°
二、填空题(每题4分,共24分)
13.已知点与点,两点都在反比例函数的图象上,且<<,那么______________. (填“>”,“=”,“<”)
14.如图,某景区想在一个长,宽的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为,如果横向小桥的宽为,那么可列出关于的方程为__________.(方程不用整理)
15.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为_____尺.
16.如图, 圆的直径垂直于弦,垂足是,,,的长为__________.
17.在菱形中,周长为,,则其面积为______.
18.方程(x﹣1)(x﹣3)=0的解为_____.
三、解答题(共78分)
19.(8分)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0。
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为,且满足,求实数m的值。
20.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.
(1)若降价6元,则平均每天销售数量为 件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
21.(8分)如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.
(1)求这条抛物线的表达式.
(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.
①求t的取值范围.
②若使△BPQ为直角三角形,请求出符合条件的t值;
③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.
22.(10分)如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
23.(10分)如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D.
(1)求BC的长;
(2)连接AD和BD,判断△ABD的形状,说明理由.
(3)求CD的长.
24.(10分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)
25.(12分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cs53°≈,tan53°≈)
26.(12分)如图,在中,,,,P是BC上一动点,过P作AP的垂线交CD于E,将翻折得到,延长FP交AB于H,连结AE,PE交AC于G.
(1)求证;
(2)当时,求AE的长;
(3)当时,求AG的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、B
4、C
5、D
6、A
7、C
8、C
9、A
10、C
11、C
12、C
二、填空题(每题4分,共24分)
13、<
14、
15、3
16、
17、8
18、x1=3,x2=1
三、解答题(共78分)
19、(1);(1)1
20、(1)32;(2)每件商品应降价2元时,该商店每天销售利润为12元.
21、(1);(2)①,②t的值为或,③当t=2时,四边形ACQP的面积有最小值,最小值是.
22、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
23、(1);(2)△ABD是等腰直角三角形,见解析;(3)
24、(1)见解析;(2)169π(cm2).
25、(20-5)千米.
26、(1)见解析;(2);(3)
江苏省苏州市姑苏区振华学校2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份江苏省苏州市姑苏区振华学校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了如图,,,以下结论成立的是等内容,欢迎下载使用。
江苏省苏州市园区第十中学2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份江苏省苏州市园区第十中学2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了已知二次函数等内容,欢迎下载使用。
江苏省苏州市实验中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份江苏省苏州市实验中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。