2023-2024学年黑龙江省庆安县九年级数学第一学期期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且AO=CD,则∠PCA=( )
A.30°B.60°C.67.5°D.45°
2.反比例函数,下列说法不正确的是( )
A.图象经过点(1,-3)B.图象位于第二、四象限
C.图象关于直线y=x对称D.y随x的增大而增大
3.已知二次函数的图象如图所示,现给出下列结论:①;②;③;④.其中正确结论的个数是( )
A.1B.2C.3D.4
4.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )
A.2a2B.3a2C.4a2D.5a2
5.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为( )
A.0°< ∠AED <180°B.30°< ∠AED <120°
C.60°< ∠AED <120°D.60°< ∠AED <150°
6.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A.1π﹣B.1π﹣9C.12π﹣D.
7.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()
A.B.C.D.
8.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为,,则产量稳定,适合推广的品种为:( )
A.甲、乙均可B.甲C.乙D.无法确定
9.点P(﹣2,4)关于坐标原点对称的点的坐标为( )
A.(4,﹣2)B.(﹣4,2)C.(2,4)D.(2,﹣4)
10.下图中反比例函数与一次函数在同一直角坐标系中的大致图象是( )
A.B.
C.D.
11.对于反比例函数,下列说法不正确的是
A.图象分布在第二、四象限
B.当时,随的增大而增大
C.图象经过点(1,-2)
D.若点,都在图象上,且,则
12.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是( )
A.2B.C.D.
二、填空题(每题4分,共24分)
13.已知关于x的方程的一个根为2,则这个方程的另一个根是
▲ .
14.已知是方程的一个根,则方程另一个根是________.
15.若关于的一元二次方程有实数根,则的取值范围是_________.
16.如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.
17.如图,把直角三角形的斜边放在定直线上,按顺时针方向在上转动两次,使它转到的位置.设,,则顶点运动到点的位置时,点经过的路线长为_________.
18.已知,其相似比为2:3,则他们面积的比为__________.
三、解答题(共78分)
19.(8分)如图,四边形是的内接四边形,,,,求的长.
20.(8分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点.
求证:是的切线;
已知的半径是.
①若是的中点,,则 ;
②若,求的长.
21.(8分)如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
22.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
23.(10分)如图,在菱形中,点在对角线上,延长交于点.
(1)求证:;
(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)
24.(10分)2019年,中央全面落实“稳房价”的长效管控机制,重庆房市较上一年大幅降温,11月,LH地产共推出了大平层和小三居两种房型共80套,其中大平层每套面积180平方米,单价1.8万元/平方米,小三居每套面积120平方米,单价1.5万元/平方米.
(1)LH地产11月的销售总额为18720万元,问11月要推出多少套大平层房型?
(2)2019年12月,中央经济会议上重申“房子是拿来住的,不是拿来炒的”,重庆房市成功稳定并略有回落.为年底清盘促销,LH地产调整营销方案,12月推出两种房型的总数量仍为80套,并将大平层的单价在原有基础上每平方米下调万元(m>0),将小三居的单价在原有基础上每平方米下调万元,这样大平层的销量较(1)中11月的销量上涨了7m套,且推出的房屋全部售罄,结果12月的销售总额恰好与(1)中I1月的销售总额相等.求出m的值.
25.(12分)已知抛物线y=x2+(1﹣2a)x﹣2a(a是常数).
(1)证明:该抛物线与x轴总有交点;
(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;
(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线y=kx+1(k为常数)与新图象G公共点个数的情况.
26.(12分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/kg,市场调查发现,在一段时间内该产品每天的销售量W(kg)与销售单价x(元/kg)有如下关系:W=,设这种产品每天的销售利润为y(元) .
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的销售利润最大?最大利润是多少?
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、C
4、A
5、D
6、A
7、B
8、B
9、D
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、-1.
14、1
15、,但
16、1
17、
18、4:1.
三、解答题(共78分)
19、.
20、(1)详见解析;(2)①;②
21、(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);(2)或或;(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).
22、(1)y=x2-2x-1.(2)M(1,-2).(1 P(1,-4).
23、(1)详见解析;(2)详见解析;
24、(1)30 (2)2
25、(1)见解析;(2)1<a≤;(3)新图象G公共点有2个.
26、(1);(2)当销售单价定为30元时每天的销售利润最大,最大利润是1元
38,黑龙江省绥化市庆安县2023-2024学年八年级上学期期末数学试题(): 这是一份38,黑龙江省绥化市庆安县2023-2024学年八年级上学期期末数学试题(),共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年黑龙江省铁力市第四中学九年级数学第一学期期末统考试题含答案: 这是一份2023-2024学年黑龙江省铁力市第四中学九年级数学第一学期期末统考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若,则等于等内容,欢迎下载使用。
黑龙江省克东县2023-2024学年九年级数学第一学期期末统考模拟试题含答案: 这是一份黑龙江省克东县2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共8页。