上海市闵行区2023-2024学年数学九年级第一学期期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.一张圆形纸片,小芳进行了如下连续操作:
将圆形纸片左右对折,折痕为AB,如图.
将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.
将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.
连结AE、AF、BE、BF,如图.
经过以上操作,小芳得到了以下结论:
;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有
A.1个B.2个C.3个D.4个
2.下列一元二次方程有两个相等实数根的是( )
A.x2 = 0B.x2 = 4C.x2﹣2x﹣1 = 0D.x2 +1 = 0
3.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为( )
A.3B.﹣3C.±3D.9
4.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2 (m是常数,且m≠0)的图象可能是( )
A.B.C.D.
5.下列图形中,主视图为①的是( )
A.B.C.D.
6.用配方法解方程x2+6x+4=0,下列变形正确的是( )
A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±
7.下列图形中不是位似图形的是
A.B.C.D.
8.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则=( )
A.B.1C.D.
9.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有( )
A.最大值B.最小值C.最大值=D.最小值=
10.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为( )
A.40°B.45°C.60°D.80°
11.下列等式从左到右变形中,属于因式分解的是( )
A.B.
C.D.
12.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
则这四人中成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
二、填空题(每题4分,共24分)
13.请写出一个符合以下两个条件的反比例函数的表达式:___________________.
①图象位于第二、四象限;
②如果过图象上任意一点A作AB⊥x轴于点B,作AC⊥y轴于点C,那么得到的矩形ABOC的面积小于1.
14.如图所示,中,,是中点,,垂足为点,与交于点,如果,那么______.
15.若整数使关于的二次函数的图象在轴的下方,且使关于的分式方程有负整数解,则所有满足条件的整数的和为__________.
16.二次函数y=x2+4x+a图象上的最低点的横坐标为_____.
17.小明和小红在太阳光下行走,小明身高1.5m,他的影长2.0m,小红比小明矮30cm,此刻小红的影长为______m.
18.若二次根式有意义,则x的取值范围是 ▲ .
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
求一次函数和反比例函数的表达式;
请直接写出时,x的取值范围;
过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.
20.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小黄出发0.5小时时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)小黄出发1.5小时时,离目的地还有多少千米?
21.(8分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)观察图象,当x>0时,直接写出的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
22.(10分)随着传统的石油、煤等自然资源逐渐消耗殆尽,风力、核能、水电等一批新能源被广泛使用.现在山顶的一块平地上建有一座风车,山的斜坡的坡度,长是100米,在山坡的坡底处测得风车顶端的仰角为,在山坡的坡顶处测得风车顶端的仰角为,请你计算风车的高度.(结果保留根号)
23.(10分)抛物线过点(0,-5)和(2,1).
(1)求b,c的值;
(2)当x为何值时,y有最大值?
24.(10分)如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接.
(1)求证:.
(2)求证:
(3)若,求的值.
25.(12分)随着经济快速发展,环境问题越来越受到人们的关注.某校为了了解节能减排、垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:
(1)本次调查的学生共有___________人,估计该校名学生中“不了解”的人数是__________人;
(2)将条形统计图补充完整;
(3)“非常了解”的人中有,两名男生,,两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到名男生的概率.
26.(12分)游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.
(1)求反比例函数的关系式及其自变量的取值范围;
(2)求整条滑道的水平距离;
(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、B
4、D
5、B
6、C
7、C
8、B
9、D
10、A
11、D
12、B
二、填空题(每题4分,共24分)
13、,答案不唯一
14、4
15、
16、﹣1.
17、1.6
18、.
三、解答题(共78分)
19、反比例函数的解析式为,一次函数解析式为:;当或时,;当点C的坐标为或时,.
20、(1)2千米;(2)y=90x﹣24(0.8≤x≤2);(3)3千米
21、(1);(2)2
23、(1)b, c的值分别为5, -5;(2)当时有最大值
24、 (1)证明见解析;(2)证明见解析;(3).
25、(1)50,600;(2)见解析;(3)见解析,
26、(1),;(2)7m;(3).
选 手
甲
乙
丙
丁
平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.035
0.015
0.025
0.027
上海市闵行区民办上宝中学2023-2024学年九年级数学第一学期期末统考模拟试题含答案: 这是一份上海市闵行区民办上宝中学2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知二次函数,则下列说法,抛物线与坐标轴的交点个数是等内容,欢迎下载使用。
上海市闵行区闵行区莘松中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案: 这是一份上海市闵行区闵行区莘松中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了计算 的结果是,抛物线y=等内容,欢迎下载使用。
2023-2024学年上海市闵行区数学九年级第一学期期末经典模拟试题含答案: 这是一份2023-2024学年上海市闵行区数学九年级第一学期期末经典模拟试题含答案,共8页。