吉林省长春市德惠市2023-2024学年九年级数学第一学期期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30B.27C.14D.32
2.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( )
A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16
3.如图,四边形是的内接四边形,与的延长线交于点,与的延长线交于点,,,则的度数为( )
A.38°B.48°C.58°D.68°
4.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为( )
A.50°B.80°C.100°D.110°
5.如图,在⊙O中,AB⊥OC,垂足为点D,AB=8,CD=2,若点P是优弧上的任意一点,则sin∠APB=( )
A.B.C.D.
6.的相反数是( )
A.B.C.D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B.x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D.x2+3x+16=0
8.如图,一边靠墙(墙有足够长),其它三边用12 m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( )
A.16 m2B.12 m2C.18 m2D.以上都不对
9.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是( )
A.30° B.45° C.55° D.60°
10.如图,一张矩形纸片ABCD的长AB=xcm,宽BC=ycm,把这张纸片沿一组对边AB和D的中点连线EF对折,对折后所得矩形AEFD与原矩形ADCB相似,则x:y的值为( )
A.2B.C.D.
11.下列事件中,是必然事件的是( )
A.随意翻倒一本书的某页,这页的页码是奇数.B.通常温度降到以下,纯净的水结冰.
C.从地面发射一枚导弹,未击中空中目标.D.购买1张彩票,中奖.
12.一元二次方程的左边配成完全平方后所得方程为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.已知四条线段a、2、6、a+1成比例,则a的值为_____.
14.设,,,设,则S=________________ (用含有n的代数式表示,其中n为正整数).
15.如果将抛物线向上平移,使它经过点,那么所得新抛物线的表达式是_______________.
16.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y(毫克)与时间t(小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.
17.五角星是我们生活中常见的一种图形,如图五角星中,点C,D分别为线段AB的右侧和左侧的黄金分割点,已知黄金比为,且AB=2,则图中五边形CDEFG的周长为________.
18.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.
三、解答题(共78分)
19.(8分)《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右.在其“勾股”章中有这样一个问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD.EG=15里,HG经过点A,则FH等于多少里?请你根据上述题意,求出FH的长度.
20.(8分)如图,在中,,以为直径作交于点.过点作,垂足为,且交的延长线于点.
(1)求证:是的切线;
(2)若,,求的长.
21.(8分)已知正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为1.
(1)求反比例函数的解析式;
(2)当时,求反比例函数的取值范围
22.(10分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.
23.(10分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字 1, 2, 3, 4 的 4 个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于 2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.
24.(10分)如下图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点.另一边交的延长线于点.
(1)观察猜想:线段与线段的数量关系是 ;
(2)探究证明:如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)拓展延伸:如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,若、,求的值.
25.(12分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,:经常使用;:偶尔使用;:了解但不使用;:不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:
(1)这次被调查的总人数是 人,“:了解但不使用”的人数是 人,“:不了解”所占扇形统计图的圆心角度数为 .
(2)某小区共有人,根据调查结果,估计使用过“共享单车”的大约有多少人?
(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.
26.(12分)一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.
(1)求圆形滚轮的半径的长;
(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、A
4、C
5、B
6、D
7、C
8、C
9、D
10、B
11、B
12、B
二、填空题(每题4分,共24分)
13、3
14、
15、
16、7.1
17、
18、
三、解答题(共78分)
19、1.1里
20、(1)见解析;(2)BD长为1.
21、(1);(2).
22、12.1m.
23、不公平
24、(1);(2)成立,证明过程见解析;(3).
25、(1),,;(2)4500人;(3)
26、(1);(2)
吉林省长春市德惠市第十九中学2023-2024学年九上数学期末经典模拟试题含答案: 这是一份吉林省长春市德惠市第十九中学2023-2024学年九上数学期末经典模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,用配方法解方程,方程应变形为等内容,欢迎下载使用。
吉林省长春市德惠市大区2023-2024学年数学九年级第一学期期末统考试题含答案: 这是一份吉林省长春市德惠市大区2023-2024学年数学九年级第一学期期末统考试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值是等内容,欢迎下载使用。
2023-2024学年吉林省长春市九台数学九年级第一学期期末调研试题含答案: 这是一份2023-2024学年吉林省长春市九台数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了对于二次函数y=2,一元二次方程x等内容,欢迎下载使用。