吉林省松原市宁江区2023-2024学年九年级数学第一学期期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,在正方形网格中,线段A′B′是线段AB绕某点顺时针旋转一定角度所得,点A′与点A是对应点,则这个旋转的角度大小可能是( )
A.45°B.60°C.90°D.135°
2.用配方法解一元二次方程,变形正确的是( )
A.B.C.D.
3.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )
A.(,)B.(,)C.(,)D.(,4)
4.关于抛物线,下列结论中正确的是( )
A.对称轴为直线
B.当时,随的增大而减小
C.与轴没有交点
D.与轴交于点
5.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为( )
A.B.C.D.
6.若关于的一元二次方程有两个相等的根,则的值为( )
A.B.C.或D.或
7.对于反比例函数y=﹣,下列说法正确的有( )
①图象经过点(1,﹣3);
②图象分布在第二、四象限;
③当x>0时,y随x的增大而增大;
④点A(x1,y1)、B(x1,y1)都在反比例函数y=﹣的图象上,若x1<x1,则y1<y1.
A.1个B.1个C.3个D.4个
8.若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是
A.10°B.30°C.80°D.120°
9.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有( )
A.1个B.2C.3个D.4个
10.一个正比例函数的图象过点(2,﹣3),它的表达式为( )
A.B.C.D.
11.在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是( )
A.k≥B.k>C.k<﹣D.k<
12.如图所示,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC平行于x轴,△ABC的面积为S,则( )
A.S=1B.S=2C.1
二、填空题(每题4分,共24分)
13.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是_____.
14.(2016广东省茂名市)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是__________.
15.已知点P是线段AB的黄金分割点,AP>PB.若AB=1.则AP=__(结果保留根号).
16.若一元二次方程有一根为,则_________.
17.如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变长了_____m.
18.如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,则弧DF的长为_________.
三、解答题(共78分)
19.(8分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
20.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连接DE,点F为线段DE上一点,且∠AFE=∠B.
(1)求证△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的长度.
21.(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
22.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.
①求此时m的值.
②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
23.(10分)某大型商场出售一种时令鞋,每双进价100元,售价300元,则每天能售出400双.经市场调查发现:每降价10元,则每天可多售出50双.设每双降价x元,每天总获利y元.
(1)如果降价40元,每天总获利多少元呢?
(2)每双售价为多少元时,每天的总获利最大?最大获利是多少?
24.(10分)如图3,小明用一张边长为的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为的正方形,再折成如图3所示的无盖纸盒,记它的容积为.
(3)关于的函数表达式是__________,自变量的取值范围是___________.
(3)为探究随的变化规律,小明类比二次函数进行了如下探究:
①列表:请你补充表格中的数据:
②描点:把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;
③连线:用光滑的曲线顺次连结各点.
(3)利用函数图象解决:若该纸盒的容积超过,估计正方形边长的取值范围.(保留一位小数)
25.(12分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.
26.(12分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、C
4、B
5、D
6、B
7、C
8、D
9、D
10、A
11、D
12、B
二、填空题(每题4分,共24分)
13、x<﹣2或0<x<1
14、.
15、5﹣5
16、1
17、1.
18、
三、解答题(共78分)
19、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
20、(1)见解析;(2)DF=4
21、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元
22、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为
23、(1)如果降价40元,每天总获利96000元;(2)每双售价为240元时,每天的总获利最大,最大获利是98000元.
24、(3),;(3)①36,8;②见解析;③见解析;(3)(或)
25、(1);(2).
26、树高为米.
3
3.5
3
3.5
3
3.5
3
3
33.5
33.5
3.5
3
吉林省松原市宁江区第四中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案: 这是一份吉林省松原市宁江区第四中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年吉林省松原市宁江区九年级(上)期末数学试卷-普通用卷: 这是一份2023-2024学年吉林省松原市宁江区九年级(上)期末数学试卷-普通用卷,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年吉林省松原市宁江区九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年吉林省松原市宁江区九年级(上)期末数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。