四川省泸州市2023-2024学年九上数学期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.抛物线y=﹣(x﹣)2﹣2的顶点坐标是( )
A.(,2)B.(﹣,2)C.(﹣,﹣2)D.(,﹣2)
2.由若干个相同的小正方体搭成的一个几何体的俯视图和左视图如图所示,则搭成这个几何体的小正方体的个数最多有( )
A.5个B.6个C.7个D.8个
3.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在( )
A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限
4.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),对称轴是x=1,现有结论:①abc>0 ②9a﹣3b+c=0 ③b=﹣2a④(﹣1)b+c<0,其中正确的有( )
A.1个B.2个C.3个D.4个
5.函数y=(x+1)2-2的最小值是( )
A.1B.-1C.2D.-2
6.下列说法中不正确的是( )
A.相似多边形对应边的比等于相似比
B.相似多边形对应角平线的比等于相似比
C.相似多边形周长的比等于相似比
D.相似多边形面积的比等于相似比
7.若点 A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数 y=﹣的图象上,则 y1,y2,y3 的大小关系是( )
A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1
8.某射击运动员在训练中射击了10次,成绩如图所示:
下列结论不正确的是( )
A.众数是8B.中位数是8C.平均数是8.2D.方差是1.2
9.已知关于的一元二次方程的两个根分别是,,且满足,则的值是( )
A.0B.C.0或D.或0
10.下列二次根式中,是最简二次根式的是( )
A.B.C.D.
11.如图所示,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC平行于x轴,△ABC的面积为S,则( )
A.S=1B.S=2C.1
12.如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是( )
A.S1>S2B.S1<S2C.S1=S2D.不能确定
二、填空题(每题4分,共24分)
13.如图,在平行四边形ABCD中,点E在AD边上,且AE:ED=1:2,若EF=4,则CE的长为___
14.若,则x=__.
15.(2016广东省茂名市)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是__________.
16.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝1.
17.点P(3,﹣4)关于原点对称的点的坐标是_____.
18.已知x=1是方程x2﹣a=0的根,则a=__.
三、解答题(共78分)
19.(8分)如图,点的坐标为,点的坐标为.点的坐标为.
(1)请在直角坐标系中画出绕着点逆时针旋转后的图形.
(2)直接写出:点的坐标(________,________),
(3)点的坐标(________,________).
20.(8分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若CE=,AB=6,求⊙O的半径.
21.(8分)从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t﹣5t2,那么小球抛出 秒后达到最高点.
22.(10分)空间任意选定一点,以点为端点,作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,,,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.
(1)有序数组所对应的码放的几何体是______________;
A.B.C.D.
(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.
(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:
根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,,,,,表示)
(4)当,,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______, ______),此时求出的这个几何体表面积的大小为____________(缝隙不计)
23.(10分)2019年11月26日,鲁南高铁正式开通运营.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,,∠ABD=105°,求AD的长.
24.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.
(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;
(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.
25.(12分)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:
(1)三面涂有颜色的概率;
(2)两面涂有颜色的概率;
(3)各个面都没有颜色的概率.
26.(12分)小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.
(1)请你在图中画出小亮站在AB处的影子BE;
(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、B
4、C
5、D
6、D
7、C
8、D
9、C
10、C
11、B
12、B
二、填空题(每题4分,共24分)
13、1
14、
15、.
16、14
17、(﹣3,4).
18、1
三、解答题(共78分)
19、 (1)见解析;(2)-4.2;(3)-1.3.
20、(1)DE与⊙O相切;理由见解析;(2)4.
21、1
22、 (1) B;(2) 2,3,2 , 1 ;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2
23、2()km
24、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.
25、(1);(2);(3)
26、(1)如图,BE为所作;见解析;(2)小亮(CD)的影长为3m.
几何体有序数组
单位长方体的个数
表面上面积为S1的个数
表面上面积为S2的个数
表面上面积为S3的个数
表面积
四川省广安市代市中学2023-2024学年九上数学期末统考模拟试题含答案: 这是一份四川省广安市代市中学2023-2024学年九上数学期末统考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知2a=3b等内容,欢迎下载使用。
四川省乐山市2023-2024学年九上数学期末统考模拟试题含答案: 这是一份四川省乐山市2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了对于二次函数y=等内容,欢迎下载使用。
四川省成都市青白江区2023-2024学年九上数学期末统考试题含答案: 这是一份四川省成都市青白江区2023-2024学年九上数学期末统考试题含答案,共9页。