安徽省合肥市四十二中学2023-2024学年九上数学期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图所示,若△ABC∽△DEF,则∠E的度数为( )
A.28°B.32°C.42°D.52°
2.函数的图象上有两点,,若,则( )
A.B.C.D.、的大小不确定
3.如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=( )
A.25°B.30°C.40°D.60°
4.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是( )
A.4B.6C.8D.10
5.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )
A.4B.4C.6D.4
6.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是( )
A.y=xB.y=﹣C.y=x2D.y=﹣x2
7.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是( )
A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2
8.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为( )
A.B.C.D.
9.一元二次方程的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
10.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
11.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示( )
A.B.C.D.
12.如图,正方形的顶点分别在轴和轴上,与双曲线恰好交于的中点. 若,则的值为( )
A.6B.8C.10D.12
二、填空题(每题4分,共24分)
13.如图,分别以等边三角形的每个顶点为圆心,边长为半径,在另两个顶点之间作一段弧,三段弧围成的曲边三角形称为“勒洛三角形”,若等边三角形的边长为2,则“勒洛三角形”的面积为_________.
14.若关于的一元二次方程有实数根,则的取值范围是_______.
15.如图,在直角三角形中,是斜边上的高,,则的值为___.
16.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD的周长为_____.
17.如图,把绕着点顺时针方向旋转角度(),得到,若,,三点在同一条直线上,,则的度数是___________.
18.如图,矩形中,,点在边上,且,的延长线与的延长线相交于点,若,则______.
三、解答题(共78分)
19.(8分)如图,抛物线 经过点,与轴相交于,两点,
(1)抛物线的函数表达式;
(2)点在抛物线的对称轴上,且位于轴的上方,将沿沿直线翻折得到,若点恰好落在抛物线的对称轴上,求点和点的坐标;
(3)设是抛物线上位于对称轴右侧的一点,点在抛物线的对称轴上,当为等边三角形时,求直线的函数表达式.
20.(8分)如图,抛物线与轴交于点和点,与轴交于点,其对称轴为,为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点在运动过程中,求四边形面积最大时的值及此时点的坐标.
21.(8分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人.
(1)用树状图或列表法列出所有可能情形;
(2)求名主持人恰好男女的概率.
22.(10分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.
23.(10分)阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案
(3)请直接写出题2的结果.
24.(10分)已知,如图,在平面直角坐标系中,直线 与轴交于点A,与轴交于点B,抛物线经过A、B两点,与轴的另一个交点为C.
(1)直接写出点A和点B的坐标;
(2)求抛物线的函数解析式;
(3)D为直线AB下方抛物线上一动点;
①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;
②是否存在点D,使得∠DBA的度数恰好是∠BAC度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.
25.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌
粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?
26.(12分)如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.
(1)用含t的代数式分别表示点E和点F的坐标;
(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值;
(3)当t=2时,求O′点在坐标.
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、B
4、D
5、B
6、D
7、D
8、B
9、D
10、B
11、C
12、D
二、填空题(每题4分,共24分)
13、
14、
15、
16、1
17、
18、
三、解答题(共78分)
19、(1);(2)点的坐标为;(3)直线的函数表达式为或.
20、(1),(-1,4);(2),P(,)
21、(1)答案见解析;(2)
22、
23、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).
24、(1)A(-4,0)、B(0,-2);(2);(3)①(-1,3)或(-3,-2);②(-2,-3).
25、(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.
26、(1)E(3t,0),F(12,10﹣2t);(2)t=;(3)O'(,)
安徽省合肥市一六八中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案: 这是一份安徽省合肥市一六八中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共7页。试卷主要包含了反比例函数的图象位于,将一个直角三角形绕它的最长边,下表是二次函数的的部分对应值等内容,欢迎下载使用。
安徽省合肥市四十二中学铁国际城校区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份安徽省合肥市四十二中学铁国际城校区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法正确的是,下列二次根式是最简二次根式的是等内容,欢迎下载使用。
2023-2024学年安徽省合肥市蜀山区琥珀中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年安徽省合肥市蜀山区琥珀中学九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列函数是二次函数的是等内容,欢迎下载使用。