安徽省舒城县2023-2024学年数学九上期末达标测试试题含答案
展开这是一份安徽省舒城县2023-2024学年数学九上期末达标测试试题含答案,共9页。试卷主要包含了答题时请按要求用笔,点P,已知点在线段上等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.方程的解是( )
A.B.C.或D.或
2.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )
A.2πcmB.4πcmC.6πcmD.8πcm
3.如图,将绕点逆时针旋转70°到的位置,若,则( )
A.45°B.40°C.35°D.30°
4.一元二次方程x(x﹣1)=0的解是( )
A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=1
5.如图,若为正整数,则表示的值的点落在( )
A.段①B.段②C.段③D.段④
6.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是( )
A.B.C.D.
7.点P(x﹣1,x+1)不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.已知点在线段上(点与点、不重合),过点、的圆记作为圆,过点、的圆记作为圆,过点、的圆记作为圆,则下列说法中正确的是( )
A.圆可以经过点B.点可以在圆的内部
C.点可以在圆的内部D.点可以在圆的内部
9.如图,在平面直角坐标系中,与轴相切于点,为的直径,点在函数的图象上,若的面积为,则的值为( )
A.5B.C.10D.15
10.如图,在4×4的网格中,点A,B,C,D,H均在网格的格点上,下面结论:
①点H是△ABD的内心
②点H是△ABD的外心
③点H是△BCD的外心
④点H是△ADC的外心
其中正确的有( )
A.1个B.2个C.3个D.4个
11.在△ABC中,若|sinA﹣|+(﹣csB)2=0,则∠C的度数是( )
A.45°B.75°C.105°D.120°
12.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点M是边BC上一动点(不与B、C重合).过点M的双曲线(x>0)交AB于点N,连接OM、ON.下列结论:
①△OCM与△OAN的面积相等;
②矩形OABC的面积为2k;
③线段BM与BN的长度始终相等;
④若BM=CM,则有AN=BN.
其中一定正确的是( )
A.①④B.①②C.②④D.①③④
二、填空题(每题4分,共24分)
13.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为______________.
14.在Rt△ABC中,∠C=90°,如果AC=9,csA=,那么AB=________.
15.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是_____cm.
16.如图所示,在菱形OABC中,点B在x轴上,点A的坐标为(6,10),则点C的坐标为_____.
17.如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF的长为_____.
18.如图所示,写出一个能判定的条件________.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.
(1)求反比例函数的解析式;
(2)求cs∠OAB的值;
(1)求经过C、D两点的一次函数解析式.
20.(8分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).
(1)点B的坐标为 ,点D的坐标为 ;
(2)求S与t的函数解析式,并写出t的取值范围.
21.(8分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点A、B.点C的坐标是(﹣1,0),抛物线y=ax2+bx﹣2经过A、C两点且交y轴于点D.点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m(m≠0).
(1)求点A的坐标.
(2)求抛物线的表达式.
(3)当以B、D、Q,M为顶点的四边形是平行四边形时,求m的值.
22.(10分)化简:.
23.(10分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.
(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;
(2)请你计算小悦拿到的两个粽子都是肉馅的概率.
24.(10分)阅读材料:小胖同学遇到这样一个问题,如图1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的长;
小胖经过思考后,在CD上取点F使得∠DEF=∠ADB(如图2),进而得到∠EFD=45°,试图构建“一线三等角”图形解决问题,于是他继续分析,又意外发现△CEF∽△CDE.
(1)请按照小胖的思路完成这个题目的解答过程.
(2)参考小胖的解题思路解决下面的问题:
如图3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.
25.(12分)如图,反比例函数的图象与正比例函数的图象交于点,且点的横坐标为2.
(1)求反比例函数的表达;
(2)若射线上有点,,过点作与轴垂直,垂足为点,交反比例函数图象于点,连接,,请求出的面积.
26.(12分)《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2 =____;
同种操作,如图3,S阴影3=1--()2-()3 =__________;
如图4,S阴影4=1--()2-()3-()4 =___________;
……若同种地操作n次,则S阴影n=1--()2-()3-…-()n =_________.
于是归纳得到:+()2+()3+…+()n =_________.
(理论推导)
(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.
解:设S=1+2+22+23+24+…+22015+22016,①
将①×2得:2S=2+22+23+24+…+22016+22017,②
由②-①得:2S—S=22017—1,即=22017-1.
即1+2+22+23+24+…+22015+22016=22017-1
根据上述材料,试求出+()2+()3+…+()n 的表达式,写出推导过程.
(规律应用)
(3)比较+++…… __________1(填“”、“”或“=”)
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、D
4、D
5、B
6、D
7、D
8、B
9、C
10、C
11、C
12、A
二、填空题(每题4分,共24分)
13、x1= -1, x2=1
14、27
15、1
16、(6,﹣10)
17、或
18、(答案不唯一)
三、解答题(共78分)
19、(1);(2);(1).
20、(1)(2)当0<t≤2时,S=,当2<t≤5时,S=,当5<t<7时,S=t2﹣14t+1.
21、(1)点A坐标为(4,0);(2)y=x2﹣x﹣2;(3)m=2或1+或1﹣.
22、
23、(1)树状图见解析;(2)
24、CD=5;(1)见解析;(2)
25、(1)y=(x>0);(2)△OAB的面积为2.
26、(1);;;()n;1 - ()n ;(2)+()2+()3+…+()n = 1-()n,推导过程见解析;(3)=
相关试卷
这是一份安徽省芜湖无为县联考2023-2024学年九上数学期末达标测试试题含答案,共8页。试卷主要包含了如果点A,下列图形中,成中心对称图形的是,反比例函数y=﹣的图象在,二次函数的顶点坐标为等内容,欢迎下载使用。
这是一份2023-2024学年安徽省淮南市田家庵区九上数学期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,则,抛物线的对称轴是,用配方法解方程时,方程可变形为等内容,欢迎下载使用。
这是一份2023-2024学年安徽省舒城县联考数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中,是相似形的是,反比例函数,下列说法不正确的是,下列各数中,属于无理数的是等内容,欢迎下载使用。