安徽省豪州涡阳县2023-2024学年九上数学期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.二次函数的图象如图所示,对称轴为直线,下列结论不正确的是( )
A.
B.当时,顶点的坐标为
C.当时,
D.当时,y随x的增大而增大
2.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为( )
A.B.C.D.
3.如图,为的直径,弦于点,若,,则的半径为( )
A.3B.4C.5D.6
4.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )
A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内
5.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于( )
A.50°B.55°C.65°D.70°
6.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )
A.6(1+x)=8.5 B.6(1+2x)=8.5
C.6(1+x)2=8.5 D.6+6(1+x)+6(1+x)2=8.5
7. 如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是( )
A.50°B.40°C.30°D.45°
8.已知点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=(k<0)的图象上,则( )
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3
9.一元二次方程x2-8x-1=0配方后为( )
A.(x-4)2=17B.(x+4)2=15
C.(x+4)2=17D.(x-4)2=17或(x+4)2=17
10. “割圆术”是我国古代的一位伟大的数学家刘徽首创的,该割圆术,就是通过不断倍增圆内接正多边形的边数来求出圆周率的一种方法,某同学在学习“割圆术”的过程中,画了一个如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为( ).
A.1B.3C.3.1D.3.14
11.如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,,于点,,,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是( )
A.B.C.D.
12.下列事件是必然事件的是( )
A.打开电视机,正在播放动画片B.经过有交通信号灯的路口,遇到红灯
C.过三点画一个圆D.任意画一个三角形,其内角和是
二、填空题(每题4分,共24分)
13.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.
14.若、是方程的两个实数根,且x1+x2=1-x1x2,则 的值为________.
15.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为_______.
16.两个相似多边形的一组对应边分别为2cm和3cm,那么对应的这两个多边形的面积比是__________
17.已知:中,点是边的中点,点在边上,,,若以,,为顶点的三角形与相似,的长是____.
18.若抛物线与轴没有交点,则的取值范围是__________.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1).
(1)把平移后,其中点移到点,面出平移后得到的;
(2)把绕点按逆时针方向旋转,画出旋转后得到的,并求出旋转过程中点经过的路径长(结果保留根号和).
20.(8分)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
21.(8分)如图,、、、分别为反比例函数与图象上的点,且轴,轴,与相交于点,连接、.
(1)若点坐标,点坐标,请直接写出点、点、点的坐标;
(2)连接、,若四边形是菱形,且点的坐标为,请直接写出、之间的数量关系式;
(3)若、为动点,与是否相似?为什么?
22.(10分)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.
(1)求k和m的值;
(2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围.
23.(10分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:
(1)频数分布表中的 ;
(2)将上面的频数分布直方图补充完整;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.
24.(10分)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:.
25.(12分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.
26.(12分)中华鲟是国家一级保护动物,它是大型洄游性鱼类,生在长江,长在海洋,受生态环境的影响,数量逐年下降。中华鲟研究所每年定期通过人工养殖放流来增加中华鲟的数量,每年放流的中华鲟中有少数体内安装了长效声呐标记,便于检测它们从长江到海洋的适应情况,这部分中华鲟简称为“声呐鲟”,研究所收集了它们到达下游监测点A的时间t(h)的相关数据,并制作如下不完整统计图和统计表.
已知:今年和去年分别有20尾“声呐鲟”在放流的96小时内到达监测点A,今年落在24
今年20尾“声呐鲟”到达监测点A所用时间t(h)的频数分布直方图
关于“声呐鲟”到达监测点A所用时间t(h)的统计表
(1)请补全频数分布直方图,并根据以上信息填空:a= ;
(2)中华鲟到达海洋的时间越快,说明它从长江到海洋的适应情况就越好,请根据上述信息,选择一个统计量说明去年和今年中哪一年中华鲟从长江到海洋的适应情况更好;
(3)去年和今年该放流点共放流1300尾中华鲟,其中“声呐鲟”共有50尾,请估计今年和去年在放流72小时内共有多少尾中华鲟通过监测站A.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、C
4、A
5、B
6、C
7、B
8、C
9、A
10、B
11、C
12、D
二、填空题(每题4分,共24分)
13、x(x+12)=1
14、1
15、
16、4:9
17、4或
18、;
三、解答题(共78分)
19、(1)详见解析;(2)画图详见解析,
20、证明见解析.
21、(1)、、;(2);(3),证明详见解析.
22、 (1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-.
23、(1)14;(2)补图见解析;(3)1.
24、见解析.
25、见解析
26、(1)2;(2)见详解;(3)1560
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
4
0.08
平均数
中位数
众数
方差
去年
64.2
68
73
15.6
今年
56.2
a
68
629.7
2023-2024学年安徽省亳州市涡阳县王元中学九上数学期末统考模拟试题含答案: 这是一份2023-2024学年安徽省亳州市涡阳县王元中学九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况是,抛物线的项点坐标是,下列各式计算正确的是等内容,欢迎下载使用。
2023-2024学年安徽省亳州市涡阳县九上数学期末综合测试模拟试题含答案: 这是一份2023-2024学年安徽省亳州市涡阳县九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了若x=2y,则的值为,下列说法等内容,欢迎下载使用。
2023-2024学年安徽省亳州地区九上数学期末调研模拟试题含答案: 这是一份2023-2024学年安徽省亳州地区九上数学期末调研模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。