山东省泰安泰山区七校联考2023-2024学年数学九上期末联考模拟试题含答案
展开
这是一份山东省泰安泰山区七校联考2023-2024学年数学九上期末联考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点在等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,已知抛物线的对称轴过点且平行于y轴,若点在抛物线上,则下列4个结论:①;②;③;④.其中正确结论的个数是( )
A.1B.2C.3D.4
2.解方程2(5x-1)2=3(5x-1)的最适当的方法是 ( )
A.直接开平方法.B.配方法C.公式法D.分解因式法
3.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A.6B.8
C.10D.12
4.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A.56°B.62°C.68°D.78°
5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是:
A.5米B.6米C.6.5米D.7米
6.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是( )
A.2B.C.D.
7.如图,是的内接正十边形的一边,平分交于点,则下列结论正确的有( )
①;②;③;④.
A.1个B.2个C.3个D.4个
8.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于( )
A.120 mB.67.5 mC.40 mD.30 m
9.抛物线的顶点在( )
A.x轴上B.y轴上C.第三象限D.第四象限
10.如图,中,中线AD,BE相交于点F,,交于AD于点G,下列说法①;②;③与面积相等;④与四边形DCEF面积相等.结论正确的是( )
A.①③④B.②③④C.①②③D.①②④
11.已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )
A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)
12.两个相似三角形对应高之比为,那么它们的对应中线之比为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,用长的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是___________.(中间横框所占的面积忽略不计)
14.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.
15.已知1是一元二次方程的一个根,则p=_______.
16.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
17.设、是关于的方程的两个根,则__________.
18.如图,抛物线与直线的两个交点坐标分别为,则关于x的方程的解为________.
三、解答题(共78分)
19.(8分)解方程:x2﹣4x﹣5=1.
20.(8分)已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
21.(8分)为了“创建文明城市,建设美丽台州”,我市某社区将辖区内一块不超过1000平方米的区域进行美化.经调查,美化面积为100平方米时,每平方米的费用为300元.每增加1平方米,每平方米的费用下降0.2元。设美化面积增加x平方米,美化所需总费用为y元.
(1)求y与x的函数关系式;
(2)当美化面积增加100平方米时,美化的总费用为多少元;
(3)当美化面积增加多少平方米时,美化所需费用最高?最高费用是多少元?
22.(10分)已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.
23.(10分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.
(1)求证:△ABE∽△DEF;
(2)求EF的长.
24.(10分)如图,菱形ABCD中,∠B=60°,AB=3cm,过点A作∠EAF=60°,分别交DC,BC的延长线于点E,F,连接EF.
(1)如图1,当CE=CF时,判断△AEF的形状,并说明理由;
(2)若△AEF是直角三角形,求CE,CF的长度;
(3)当CE,CF的长度发生变化时,△CEF的面积是否会发生变化,请说明理由.
25.(12分)如图,在正方形网格中,每个小正方形的边长均为1个单位.
(1)△ABC绕着点C顺时针旋转90°,画出旋转后对应的△A1B1C1;
(2)求△ABC旋转到△A1B1C时,的长.
26.(12分)在平面直角坐标系xOy中,抛物线().
(1)写出抛物线顶点的纵坐标 (用含a的代数式表示);
(2)若该抛物线与x轴的两个交点分别为点A和点B,且点A在点B的左侧,AB=1.
①求a的值;
②记二次函数图象在点 A,B之间的部分为W(含 点A和点B),若直线 ()经过(1,-1),且与 图形W 有公共点,结合函数图象,求 b 的取值范围.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、C
5、A
6、B
7、C
8、A
9、B
10、D
11、B
12、A
二、填空题(每题4分,共24分)
13、
14、
15、2
16、1
17、1
18、
三、解答题(共78分)
19、x=﹣1或x=2.
20、(1),;(2)的最大值为1
21、(1);(2)当美化面积增加100平方米时,美化的总费用为56000元;(3)当美化面积增加700平方米时,费用最高,最高为128000元
22、y=1(x﹣1)1+1.
23、(1)见解析;(2).
24、 (1) △AEF是等边三角形,证明见解析;(2) CF=,CE=6或CF=6,CE=;(3) △CEF的面积不发生变化,理由见解析.
25、(1)见解析;(2)
26、(1)1a+8;(2)①a=-1;②或或
相关试卷
这是一份2023-2024学年山东省济南七校联考八上数学期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列各组数是勾股数的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省泰安泰山区七校联考八年级数学第一学期期末综合测试试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,如果m是的整数部分,则m的值为,化简的结果为,如图,图中直角三角形共有,下列运算正确的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省泰安岱岳区六校联考数学八上期末统考模拟试题含答案,共7页。试卷主要包含了已知A等内容,欢迎下载使用。