山东省潍坊奎文区五校联考2023-2024学年数学九上期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.若二次根式在实数范围内有意义,则x的取值范围是
A.x≠5B.x<5C.x≥5D.x≤5
2.反比例函数的图象分布的象限是( )
A.第一、三象限B.第二、四象限C.第一象限D.第二象限
3.已知2x=3y(x≠0,y≠0),则下面结论成立的是( )
A.B.C.D.
4.如图,等边△ABC的边长为6,P为BC上一点,BP=2,D为AC上一点,若∠APD=60°,则CD的长为( )
A.2B.C.D.1
5. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )
A.B.C.D.
6.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是( )
A.①②③B.①②④C.①③④D.③④
7.下列事件中,属于不确定事件的有( )
①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员.
A.①②③ B.①③④ C.②③④ D.①②④
8.下列几何图形中,是中心对称图形但不是轴对称图形的是 ( )
A.圆B.正方形C.矩形D.平行四边形
9.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数(x>0),若该车某次的刹车距离为5 m,则开始刹车时的速度为( )
A.40 m/sB.20 m/s
C.10 m/sD.5 m/s
10.在一块半径为的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长( )
A.B.C.D.
11.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )
A.(x+3)2=1B.(x﹣3)2=1
C.(x+3)2=19D.(x﹣3)2=19
12.如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.从一副扑克牌中的13张黑桃牌中随机抽取一张,它是王牌的概率为____.
14.已知,则__________.
15.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF的最小值是_____.
16.计算的结果是_______.
17.如图,正方形的对角线上有一点,且,点在的延长线上,连接,过点作,交的延长 线于点,若,,则线段的长是________.
18.如图示,半圆的直径,,是半圆上的三等分点,点是的中点,则阴影部分面积等于______.
三、解答题(共78分)
19.(8分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.
(1)求反比例函数的表达式
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标
(3)求△PAB的面积.
20.(8分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠. 各商场的优惠条件如下:
甲商场优惠条件:第一台按原价收费,其余的每台优惠;
乙商场优惠条件:每台优惠.
设公司购买台电脑,选择甲商场时, 所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.
什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?
21.(8分)计算:3tan30°− tan45°+ 2sin60°
22.(10分)如图,已知抛物线的图象经过点、和原点,为直线上方抛物线上的一个动点.
(1)求直线及抛物线的解析式;
(2)过点作轴的垂线,垂足为,并与直线交于点,当为等腰三角形时,求的坐标;
(3)设关于对称轴的点为,抛物线的顶点为,探索是否存在一点,使得的面积为,如果存在,求出的坐标;如果不存在,请说明理由.
23.(10分)综合与探究
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.
(1)求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为 ,点P的坐标为 ;
(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.
24.(10分)如图,已知的三个顶点坐标为,,.
(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标 ;
(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标 ;
(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标 .
25.(12分)计算:|-|-+20200;
26.(12分)化简:
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、D
4、B
5、C
6、B
7、C
8、D
9、C
10、D
11、D
12、C
二、填空题(每题4分,共24分)
13、1
14、
15、
16、
17、5
18、
三、解答题(共78分)
19、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
20、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠; 当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.
21、
22、(1)直线的解析式为,二次函数的解析式是;(2);(3)存在,或
23、(1);(1)△ABC是直角三角形,理由见解析;(3),;(4)存在,F1,F1.
24、(1);(2);(3)或或.
25、
26、
湖北省武汉蔡甸区五校联考2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份湖北省武汉蔡甸区五校联考2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列图形,下列运算中,计算结果正确的是,近视镜镜片的焦距y等内容,欢迎下载使用。
山东省潍坊市2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份山东省潍坊市2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了方程x2-4=0的解是等内容,欢迎下载使用。
2023-2024学年山东省潍坊奎文区五校联考数学九年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年山东省潍坊奎文区五校联考数学九年级第一学期期末质量检测模拟试题含答案,共9页。试卷主要包含了已知等内容,欢迎下载使用。